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Abstract 

According to a widely held view, neurons in lateral geniculate 
nucleus (LGN) operate on visual stimuli in a linear fashion. There 
is ample evidence, however, that LGN responses are not entirely 
linear. To account for nonlinearities we propose a model that 
synthesizes more than 30 years of research in the field. Model 
neurons have a linear receptive field, and a nonlinear, divisive 
suppressive field. The suppressive field computes local root-mean-
square contrast. To test this model we recorded responses from 
LGN of anesthetized paralyzed cats. We estimate model parameters 
from a basic set of measurements and show that the model can 
accurately predict responses to novel stimuli. The model might 
serve as the new standard model of LGN responses. It specifies 
how visual processing in LGN involves both linear filtering and 
divisive gain control. 

1  Introduct ion 

According to a widely held view, neurons in lateral geniculate nucleus (LGN) 
operate linearly (Cai et al., 1997; Dan et al., 1996). Their response L(t) is the 
convolution of the map of stimulus contrast S(x,t) with a receptive field F(x,t): 

[ ] ( )( ) S F ,L t t0= ∗  

The receptive field F(x,t) is typically taken to be a difference of Gaussians in space 
(Rodieck, 1965) and a difference of Gamma functions in time (Cai et al., 1997). 

This linear model accurately predicts the selectivity of responses for spatiotemporal 
frequency as measured with gratings (Cai et al., 1997; Enroth-Cugell and Robson, 
1966). It also predicts the main features of responses to complex dynamic video 
sequences (Dan et al., 1996). 
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Figure 1. Response of an LGN neuron to a dynamic video sequence along with the 
prediction made by the linear model. Stimuli were sequences from Walt Disney’s 

“Tarzan”. From Mante et al. (2002). 

The linear model, however, suffers from limitations. For example, consider the 
response of an LGN neuron to a complex dynamic video sequences (Figure 1). The 
response is characterized by long periods of relative silence interspersed with brief 
events of high firing rate (Figure 1, thick traces). The linear model  (Figure 1, thin 
traces) successfully predicts the timing of these firing events but fails to account for 
their magnitude (Mante et al., 2002).  

The limitations of the linear model are not surprising since there is ample evidence 
that LGN responses are nonlinear. For instance, responses to drifting gratings 
saturate as contrast is increased (Sclar et al., 1990) and are reduced, or masked, by 
superposition of a second grating (Bonin et al., 2002). Moreover, responses are 
selective for stimulus size (Cleland et al., 1983; Hubel and Wiesel, 1961; Jones and 
Sillito, 1991) in a nonlinear manner (Solomon et al., 2002).  

We propose that these and other nonlinearities can be explained by a nonlinear 
model incorporating a nonlinear suppressive field. The qualitative notion of a 
suppressive field was proposed three decades ago by Levick and collaborators 
(1972). We propose that the suppressive field computes local root-mean-square 
contrast, and operates divisively on the receptive field output.  

Basic elements of this model appeared in studies of contrast gain control in retina 
(Shapley and Victor, 1978) and in primary visual cortex (Cavanaugh et al., 2002; 
Heeger, 1992; Schwartz and Simoncelli, 2001). Some of these notions have been 
applied to LGN (Solomon et al., 2002), to fit responses to a limited set of stimuli 
with tailored parameter sets. Here we show that a single model with fixed 
parameters predicts responses to a broad range of stimuli.  

2  Model  

In the model (Figure 2), the linear response of the receptive field L(t) is divided by 
the output of the suppressive field. The latter is a measure of local root-mean-square 
contrast clocal. The result of the division is a generator potential 
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where c50 is a constant.  
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Figure 2.  Nonlinear model of LGN responses. 

The suppressive field operates on a filtered version of the stimulus, S*=S*H, where 
H is a linear filter and * denotes convolution. The squared output of the suppressive 
field is the local mean square (the local variance) of the filtered stimulus: 

( ) ( )22

local

*S , Gc t d dtx x x= ∫∫ , 

where G(x) is a 2-dimensional Gaussian.  

Firing rate is a rectified version of generator potential, with threshold Vthresh:   

( ) ( ) threshR t V t V
+

= −   . 

To test the nonlinear model, we recorded responses from neurons in the LGN of 
anesthetized paralyzed cats. Methods for these recordings were described elsewhere 
(Freeman et al., 2002).  

3  Results 

We proceed in two steps: first we estimate model parameters by fitting the model to 
a large set of canonical data; second we fix model parameters and evaluate the 
model by predicting responses to a novel set of stimuli.  
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Figure 3. Estimating the receptive field in an example LGN cell. Stimuli are 
gratings varying in spatial (A) and temporal (B) frequency. Responses are the 

harmonic component of spike trains at the grating temporal frequency. Error bars 
represent standard deviation of responses. Curves indicate model fit.  
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Figure 4. Estimating the suppressive field in the example LGN cell. Stimuli are 
sums of a test grating and a mask grating. Responses are the harmonic component of 

spike trains at the temporal frequency of test. A: Responses to test alone. B-D: 
Responses to test+mask as function of three mask attributes: contrast (B), diameter 

(C) and spatial frequency (D). Gray areas indicate baseline response (test alone, 
50% contrast). Dashed curves are predictions of linear model. Solid curves indicate 

fit of nonlinear model. 

3 . 1  Char ac te ri z i ng  the  r ec e pti ve  f i e l d  

We obtain the parameters of the receptive field F(x,t) from responses to large 
drifting gratings (Figure 3). These stimuli elicit approximately constant output in 
the suppressive field, so they allow us to characterize the receptive field. Responses 
to different spatial frequencies constrain F(x,t) in space (Figure 3A). Responses to 
different temporal frequencies constrain F(x,t) in time (Figure 3B).   

3 . 2  Char ac te ri z i ng  the  suppre ss i ve  f ie l d  

To characterize the divisive stage, we start by measuring how responses saturate at 
high contrast (Figure 4A). A linear model cannot account for this contrast saturation 
(Figure 4A, dashed curve). The nonlinear model (Figure 4A, solid curve) captures 
saturation because increases in receptive field output are attenuated by increases in 
suppressive field output. At low contrast, no saturation is observed because the 
output of the suppressive field is dominated by the constant c50. From these data we 
estimate the value of c50. 

To obtain the parameters of the suppressive field, we recorded responses to sums of 
two drifting gratings (Figure 4B-D): an optimal test grating at 50% contrast, which 
elicits a large baseline response, and a mask grating that modulates this response. 
Test and mask temporal frequencies are incommensurate so that they temporally 
label a test response (at the frequency of the test) and a mask response (at the 



 

frequency of the mask) (Bonds, 1989). We vary mask attributes and study how they 
affect the test responses.  

Increasing mask contrast progressively suppresses responses (Figure 4B). The linear 
model fails to account for this suppression (Figure 4B, dashed curve). The nonlinear 
model (Figure 4B, solid curve) captures it because increasing mask contrast 
increases the suppressive field output while the receptive field output (at the 
temporal frequency of the test) remains constant. With masks of low contrast there 
is little suppression because the output of the suppressive field is dominated by the 
constant c50.  

Similar effects are seen if we increase mask diameter. Responses decrease until they 
reach a plateau (Figure 4C). A linear model predicts no decrease (Figure 4C, dashed 
curve). The nonlinear model (Figure 4C, solid curve) captures it because increasing 
mask diameter increases the suppressive field output while it does not affect the 
receptive field output. A plateau is reached once masks extend beyond the 
suppressive field. From these data we estimate the size of the Gaussian envelope 
G(x) of the suppressive field. 

Finally, the strength of suppression depends on mask spatial frequency (Figure 4D). 
At high frequencies, no suppression is elicited. Reducing spatial frequency increases 
suppression. This dependence of suppression on spatial frequency is captured in the 
nonlinear model by the filter H(x,t). From these data we estimate the spatial 
characteristics of the filter. From similar experiments involving different temporal 
frequencies (not shown), we estimate the filter’s selectivity for temporal frequency. 

3 . 3  P re di c ti ng  re sponse s  to novel  s t i muli  

We have seen that with a fixed set of parameters the model provides a good fit to a 
large set of measurements (Figure 3 and Figure 4). We now test whether the model 
predicts responses to a set of novel stimuli: drifting gratings varying in contrast and 
diameter. 

Responses to high contrast stimuli exhibit size tuning (Figure 5A, squares): they 
grow with size for small diameters, reach a maximum value at intermediate diameter 
and are reduced for large diameters (Jones and Sillito, 1991). Size tuning , however, 
strongly depends on stimulus contrast (Solomon et al., 2002): no size tuning is 
observed at low contrast (Figure 5A, circles). The model predicts these effects 
(Figure 5A, curves). For large, high contrast stimuli the output of the suppressive 
field is dominated by clocal, resulting in suppression of responses. At low contrast,  
clocal is much smaller than c50, and the suppressive field does not affect responses. 

Similar considerations can be made by plotting these data as a function of contrast 
(Figure 5B). As predicted by the nonlinear model (Figure 5B, curves), the effect of 
increasing contrast depends on stimulus size: responses to large stimuli show strong 
saturation (Figure 5B, squares), whereas responses to small stimuli grow linearly 
(Figure 5B, circles). The model predicts these effects because only large, high 
contrast stimuli elicit large enough responses from the suppressive field to cause 
suppression. For small, low contrast stimuli, instead, the linear model is a good 
approximation.  
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Figure 5. Predicting responses to novel stimuli in the example LGN cell. Stimuli are 
gratings varying in diameter and contrast, and responses are harmonic component of 
spike trains at grating temporal frequency. Curves show model predictions based on 
parameters as estimated in previous figures, not fitted to these data. A: Responses as 
function of diameter for different contrasts. B: Responses as function of contrast for 

different diameters.  

3 . 4  M odel  pe r for manc e  

To assess model performance across neurons we calculate the percentage of 
variance in the data that is explained by the model (see Freeman et al., 2002 for 
methods).  

The model provides good fits to the data used to characterize the suppressive field 
(Figure 4), explaining more than 90% of the variance in the data for 9/13 cells 
(Figure 6A).  Model parameters are then held fixed, and the model is used to predict 
responses to gratings of different contrast and diameter (Figure 5). The model 
performs well, explaining in 10/13 neurons above 90% of the variance in these 
novel data (Figure 6B, shaded histogram). The agreement between the quality of the 
fits and the quality of the predictions suggests that model parameters are well 
constrained and rules out a role of overfitting in determining the quality of the fits. 

To further confirm the performance of the model, in an additional 54 cells we ran a 
subset of the whole protocol, involving only the experiment for characterizing the 
receptive field (Figure 3), and the experiment involving gratings of different 
contrast and diameter (Figure 5). For these cells we estimate the suppressive field 
by fitting the model directly to the latter measurements. The model explains above 
90% of the variance in these data in 20/54 neurons and more than 70% in 39/54 
neurons (Figure 6B, white histogram).  

Considering the large size of the data set (more than 100 stimuli, requiring several 
hours of recordings per neuron) and the small number of free parameters (only 6 for 
the purpose of this work), the overall, quality of the model predictions is 
remarkable.  
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Figure 6. Percentage of variance in data explained by model. A: Experiments to 
estimate the suppressive field. B: Experiments to test the model. Gray histogram 

shows quality of predictions. White histogram shows quality of fits. 

4  Conclusions 

The nonlinear model provides a unified description of visual processing in LGN 
neurons. Based on a fixed set of parameters, it can predict both linear properties 
(Figure 3), as well as nonlinear properties such as contrast saturation (Figure 4A) 
and masking (Figure 4B-D). Moreover, once the parameters are fixed, it predicts 
responses to novel stimuli (Figure 5).  

The model explains why responses are tuned for stimulus size at high contrast but 
not at low contrast, and it correctly predicts that only responses to large stimuli 
saturate with contrast, while responses to small stimuli grow linearly. 

The model implements a form of contrast gain control. A possible purpose for this 
gain control is to increase the range of contrast that can be transmitted given the 
limited dynamic range of single neurons. Divisive gain control may also play a role 
in population coding: a similar model applied to responses of primary visual cortex 
was shown to maximize independence of the responses across neurons (Schwartz 
and Simoncelli, 2001). 

We are working towards improving the model in two ways. First, we are 
characterizing the dynamics of the suppressive field, e.g. to predict how it responds 
to transient stimuli. Second, we are testing the assumption that the suppressive field 
computes root-mean-square contrast, a measure that solely depends on the second-
order moments of the light distribution.   

Our ultimate goal is to predict responses to complex stimuli such as those shown in 
Figure 1 and quantify to what degree the nonlinear model improves on the 
predictions of the linear model. Determining the role of visual nonlinearities under 
more natural stimulation conditions is also critical to understanding their function. 

The nonlinear model synthesizes more than 30 years of research. It is robust, 
tractable and generalizes to arbitrary stimuli. As a result it might serve as the new 
standard model of LGN responses. Because the nonlinearities we discussed are 
already present in the retina (Shapley and Victor, 1978), and tend to get stronger as 
one ascends the visual hierarchy (Sclar et al., 1990), it may also be used to study 
how responses take shape from one stage to another in the visual system.  
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