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Abstract

Cortical neurons have been reported to use both rate and temporal 
codes. Here we describe a novel mode in which each neuron 
generates exactly 0 or 1 action potentials, but not more, in response 
to a stimulus. We used cell-attached recording, which ensured 
single-unit isolation, to record responses in rat auditory cortex to 
brief tone pips. Surprisingly, the majority of neurons exhibited 
binary behavior with few multi-spike responses; several dramatic 
examples consisted of exactly one spike on 100% of trials, with no 
trial-to-trial variability in spike count. Many neurons were tuned to 
stimulus frequency. Since individual trials yielded at most one 
spike for most neurons, the information about stimulus frequency 
was encoded in the population, and would not have been accessible 
to later stages of processing that only had access to the activity of a 
single unit. These binary units allow a more efficient population 
code than is possible with conventional rate coding units, and are 
consistent with a model of cortical processing in which 
synchronous packets of spikes propagate stably from one neuronal 
population to the next. 

1 Binary coding in auditory cortex 

We recorded responses of neurons in the auditory cortex of anesthetized rats to 
pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, 
allowing us to assess the variability of the neural response to multiple presentations 
of each stimulus. We first recorded multi-unit activity with conventional tungsten 
electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated 
markedly from one trial to the next (Fig. 1e), as though governed by a random 
mechanism such as that generating the ticks of a Geiger counter. Highly variable 
responses such as these, which are at least as variable as a Poisson process, are the 
norm in the cortex [3-7], and have contributed to the widely held view that cortical 
spike trains are so noisy that only the average firing rate can be used to encode 
stimuli.   

Because we were recording the activity of an unknown number of neurons, we could 
not be sure whether the strong trial-to-trial fluctuations reflected the underlying 
variability of the single units. We therefore used an alternative technique, cell-



Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial 
statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed 
high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone 
stimulus (bottom). Darker hash marks indicate spike times within the response period, which 
were used in the variability analysis. b Spikes recorded in cell-attached mode were easily 
identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and 
thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of 
suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit 
responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per 
trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under 
the Poisson assumption, this would have been highly unlikely (P ~ 10-11). d The same neuron 
as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but 
there are still no multi-spike responses. e We quantified response variability for each tone by 
dividing the variance in spike count by the mean spike count across all trials for that tone. 
Response variability for multi-unit tungsten recording (open triangles) was high for each of 
the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie 
above one (horizontal gray line), which is the value produced by a Poisson process with any 
constant or time varying event rate. Single unit responses recorded in cell-attached mode 
were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at 
least one spike from this neuron produced no multi-spike responses in 25 trials; the 
corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict 
lower bound on the variability for any response set with a mean between 0 and 1. No point 
lies above one. 

attached recording with a patch pipette [8, 9], in order to ensure single unit isolation 
(Fig. 1b). This recording mode minimizes both of the main sources of error in spike 
detection: failure to detect a spike in the unit under observation (false negatives), 
and contamination by spikes from nearby neurons (false positives). It also differs 
from conventional extracellular recording methods in its selection bias: With cell-
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attached recording neurons are selected solely on the basis of the experimenter’s 
ability to form a seal, rather than on the basis of neuronal activity and 
responsiveness to stimuli as in conventional methods.

Surprisingly, single unit responses were far more orderly than suggested by the 
multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, 
and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the 
same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some 
presentations failed to elicit a spike (Fig. 1d). Although low-variability responses 
have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the 
binary behavior described here has not previously been reported for cortical 
neurons.

The majority of the neurons (59%) in our study for which statistical significance 
could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed
noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and 
“noisy” because some stimuli elicited both single spikes and failures. In a 
substantial fraction of neurons, however, the responses showed more variability. We 
found no correlation between neuronal variability and cortical layer (inferred from 
the depth of the recording electrode), cortical area (inside vs. outside of area A1) or 
depth of anesthesia. Moreover, the binary mode of spiking was not due to the 
brevity (25 msec) of the stimuli; responses that were binary for short tones were 
comparably binary when longer (100 msec) tones were used (Fig. 2b).
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Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 
sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance 
at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were 
significantly binary (black points; see Identification methods for group statistics below). All 
points were jittered slightly so that overlying points could be seen in the figure. 2165 
response sets contained no multi-spike responses; the corresponding points fell on the line 
from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone 
duration, even for frequencies that elicited the largest responses.  Twenty additional spike 
rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike 
responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across 
the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones 
(see Identification methods for group statistics).

In many neurons, binary responses showed high temporal precision, with latencies 
sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), 
comparable to previous observations in the auditory cortex [14], and only slightly 



more precise than in monkey visual area MT [5]. High temporal precision was 
positively correlated with high response probability (Fig. 3).
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Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the 
same tone decreased with increasing response probability. a Scatter plot of standard 
deviation of latency vs. mean response for 25 presentations each of 32 tones for a different 
neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations 
of a low response tone (upper left inset, which corresponds to left-most data point) display 
much more variable latencies than rasters from a high response tone (lower right inset;
corresponds to right-most data point). b The negative correlation between latency variability 
and response size was present on average across the population of 44 neurons described in 
Identification methods for group statistics (linear fit, gray).

The low trial-to-trial variability ruled out the possibility that the firing statistics 
could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In 
other systems, low variability has sometimes been modeled as a Poisson process 
followed by a post-spike refractory period [10, 12]. In our system, however, the 
range in latencies of evoked binary responses was often much greater than the 
refractory period, which could not have been longer than the 2 msec inter-spike 
intervals observed during epochs of spontaneous spiking, indicating that binary 
spiking did not result from any intrinsic property of the spike generating mechanism 
(Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent 
spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea 
that binary spiking arises through a circuit-level, rather than a single-neuron, 
mechanism. Indeed, the fact that this suppression is observed even in the cortex of 
awake animals [15] suggests that binary spiking is not a special property of the 
anesthetized state. 

It seems surprising that binary spiking in the cortex has not previously been 
remarked upon. In the auditory cortex the explanation may be in part technical: 
Because firing rates in the auditory cortex tend to be low, multi-unit recording is 
often used to maximize the total amount of data collected. Moreover, our use of 
cell-attached recording minimizes the usual bias toward responsive or active 
neurons.

Such explanations are not, however, likely to account for the failure to observe 
binary spiking in the visual cortex, where spike count statistics have been 
scrutinized more closely [3-7]. One possibility is that this reflects a fundamental 
difference between the auditory and visual systems. An alternative interpretation— 



Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were 
not due to an absolute refractory period since the range of latencies for many tones, like that 
shown here, was much greater than any reasonable estimate for the neuron’s refractory 
period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time 
histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under 
the assumption of Poisson firing. In this representative example, four double-spike responses 
(arrows at left) were produced in 25 trials.  (a3)  We then generated rasters assuming that the 
neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. 
Even with a refractory period, this representative example includes one triple- and three 
double-spike responses. The minimum interspike-interval during spontaneous firing events 
was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for 
the refractory period. b. Spontaneous activity is reduced following high-probability 
responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) 
of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a 
illustrates a preclusion of spontaneous and evoked activity for over 200 msec following 
stimulation. The PSTHs from progressively less responsive groups of tones show 
progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be 
pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of 
Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve 
the same SNR is plotted against the mean number of spikes elicited per neuron following 
stimulation; here we have defined the SNR to be the ratio of the mean spike count to the 
standard deviation of the spike count. d Spike probability tuning curve for the same neuron 
as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency.

and one that we favor—is that the difference rests not in the sensory modality, but 
instead in the difference between the stimuli used. In this view, the binary responses 
may not be limited to the auditory cortex; neurons in visual and other sensory 
cortices might exhibit similar responses to the appropriate stimuli. For example, the 
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tone pips we used might be the auditory analog of a brief flash of light, rather than 
the oriented moving edges or gratings usually used to probe the primary visual 
cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be 
more likely to elicit conventional, rate-modulated Poisson responses in the auditory 
cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, 
even in conventional rate-modulated responses, the first spike is often privileged in 
that it carries most of the information in the spike train [5, 14, 18]. The first spike 
may be particularly important as a means of rapidly signaling stimulus transients. 

Binary responses suggest a mode that complements conventional rate coding. In the 
simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) 
governs only the rate at which a neuron generates spikes, but not the detailed 
positions of the spikes; the actual spike train itself is an instantiation of a random 
process (such as a Poisson process). By contrast, in the binomial model, the 
stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d).

Binary coding has implications for cortical computation. In the rate coding model, 
stimulus encoding is “ergodic”: a stimulus parameter can be read out either by 
observing the activity of one neuron for a long time, or a population for a short time. 
By contrast, in the binary model the stimulus value can be decoded only by 
observing a neuronal population, so that there is no benefit to integrating over long 
time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the 
population to signal quickly; the most compact message a neuron can send is one 
spike [20]. Binary coding is also more efficient in the context of population coding, 
as quantified by the signal-to-noise ratio (Fig. 4c).

The precise organization of both spike number and time we have observed suggests 
that cortical activity consists, at least under some conditions, of packets of spikes 
synchronized across populations of neurons. Theoretical work [21-23] has shown 
how such packets can propagate stably from one population to the next, but only if 
neurons within each population fire at most one spike per packet; otherwise, the 
number of spikes per packet—and hence the width of each packet—grows at each 
propagation step. Interestingly, one prediction of stable propagation models is that 
spike probability should be related to timing precision, a prediction born out by our 
observations (Fig. 3). The role of these packets in computation remains an open 
question.  

2 Identif icat ion methods for group stat ist ics  

We recorded responses to 32 different 25 msec tones from each of 175 neurons from 
the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 
and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response 
sets, with between 5 and 75 samples in each set. Of these, 3055 response sets 
contained at least one spike on at least on trial. For each response set, we tested the 
hypothesis that the observed variability was significantly lower than expected from 
the null hypothesis of a Poisson process. The ability to assess significance depended 
on two parameters: the sample size (5-75) and the firing probability. Intuitively, the 
dependence on firing probability arises because at low firing rates most responses 
produce only trials with 0 or 1 spikes under both the Poisson and binary models; 
only at high firing rates do the two models make different predictions, since in that 
case the Poisson model includes many trials with 2 or even 3 spikes while the binary 
model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent 
significance criterion of p<0.001, 467 response sets had a sufficient number of 
repeats to assess significance, given the observed firing probability. Of these, half 
(242/467=52%) were significantly less variable than expected by chance, five 
hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 



0.001 significance criterion, to yield a binary response set. Seventy-two neurons had 
at least one response set for which significance could be assessed, and of these, 49 
neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this 
population of 49 neurons, five achieved low variability through repeatable bursty 
behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were 
excluded from further analysis. The remaining 44 neurons formed the basis for the 
group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were 
subjected to an additional protocol consisting of at least 10 presentations each of 
100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec 
stimulation response sets, 44 were found to be significantly sub-Poisson at the 
p<0.05 level, in good agreement with the 43 found to be significant among the 
responses to 25 msec tones.  
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