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Abstract 

Forward decoding kernel machines (FDKM) combine large-margin clas
sifiers with hidden Markov models (HMM) for maximum a posteriori 
(MAP) adaptive sequence estimation. State transitions in the sequence 
are conditioned on observed data using a kernel-based probability model 
trained with a recursive scheme that deals effectively with noisy and par
tially labeled data. Training over very large data sets is accomplished us
ing a sparse probabilistic support vector machine (SVM) model based on 
quadratic entropy, and an on-line stochastic steepest descent algorithm. 
For speaker-independent continuous phone recognition, FDKM trained 
over 177 ,080 samples of the TlMIT database achieves 80.6% recognition 
accuracy over the full test set, without use of a prior phonetic language 
model. 

1 Introduction 

Sequence estimation is at the core of many problems in pattern recognition, most notably 
speech and language processing. Recognizing dynamic patterns in sequential data requires 
a set of tools very different from classifiers trained to recognize static patterns in data 
assumed i.i.d. distributed over time. 
The speech recognition community has predominantly relied on hidden Markov models 
(HMMs) [1] to produce state-of-the-art results. HMMs are generative models that function 
by estimating probability densities and therefore require a large amount of data to estimate 
parameters reliably. If the aim is discrimination between classes, then it might be sufficient 
to model discrimination boundaries between classes which (in most affine cases) afford 
fewer parameters. 
Recurrent neural networks have been used to extend the dynamic modeling power of 
HMMs with the discriminant nature of neural networks [2] , but learning long term depen
dencies remains a challenging problem [3]. Typically, neural network training algorithms 
are prone to local optima, and while they work well in many situations, the quality and 
consistency of the converged solution cannot be warranted. 
Large margin classifiers, like support vector machines, have been the subject of intensive 
research in the neural network and artificial intelligence communities [4]. They are attrac
tive because they generalize well even with relatively few data points in the training set, and 
bounds on the generalization error can be directly obtained from the training data. Under 
general conditions, the training procedure finds a unique solution (decision or regression 
surface) that provides an out-of-sample performance superior to many techniques. 
Recently, support vector machines (SVMs) [4] have been used for phoneme (or phone) 
recognition [5] and have shown encouraging results. However, use of a standard SVM 
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Figure 1: (a) Two state Markovian maximum-likehood (ML) model with static state transi
tion probabilities and observation vectors xemittedfrom the states. (b) Two state Markovian 
MAP model, where transition probabilities between states are modulated by the observa
tion vector x. 

classifier by itself implicitly assumes i.i.d. data, unlike the sequential nature of phones. 
To model inter-phonetic dependencies, maximum likelihood (ML) approaches assume a 
phonetic language model that is independent of the utterance data [6], as illustrated in Fig
ure 1 (a). In contrast, the maximum a posteriori (MAP) approach assumes transitions be
tween states that are directly modulated by the observed data, as illustrated in Figure 1 (b). 
The MAP approach lends itself naturally to hybrid HMM/connectionist approaches with 
performance comparable to state-of-the-art HMM systems [7]. 
FDKM [8] can be seen a hybrid HMM/SYM MAP approach to sequence estimation. It 
thereby augments the ability of large margin classifiers to infer sequential properties of 
the data. FDKMs have shown superior performance for channel equalization in digital 
communication where the received symbol sequence is contaminated by inter symbol in
terference [8]. 
In the present paper, FDKM is applied to speaker-independent continuous phone recogni
tion. To handle the vast amount of data in the TIMIT corpus, we present a sparse proba
bilistic model and efficient implementation of the associated FDKM training procedure. 

2 FDKM formulation 

The problem of FDKM recognition is formulated in the framework of MAP (maximum a 
posteriori) estimation, combining Markovian dynamics with kernel machines. A Marko
vian model is assumed with symbols belonging to S classes, as illustrated in Figure I(a) 
for S = 2. Transitions between the classes are modulated in probability by observation 
(data) vectors x over time. 

2.1 Decoding Formulation 

The MAP forward decoder receives the sequence X [n] = {x[n], x [n - 1], ... ,x li]} 
and produces an estimate of the probability of the state variable q[n] over all classes i, 
adn] = P(q[n] = i I X [n], w) , where w denotes the set of parameters for the learning 
machine. Unlike hidden Markov models, the states directly encode the symbols, and the 
observations x modulate transition probabilities between states [7]. Estimates of the poste
rior probability a i [n] are obtained from estimates of local transition probabilities using the 
forward-decoding procedure [7] 

S - l 

adn] = L Pij[n] aj[n - 1] 
j =O 

(1) 

where Pij [n] = P(q[n] = i I q[n - 1] = j , x[n], w) denotes the probability of making 
a transition from class j at time n - 1 to class i at time n, given the current observation 
vector x [n]. The forward decoding (1) embeds sequential dependence of the data wherein 
the probability estimate at time instant n depends on all the previous data. An on-line 



estimate of the symbol q[n] is thus obtained: 

q est [n] = arg max ai [n] (2) 
t 

The BCJR forward-backward algorithm [9] produces in principle a better estimate that 
accounts for future context, but requires a backward pass through the data, which is im
practical in many applications requiring real time decoding. 
Accurate estimation of transition probabilities Pij [n ] in (1) is crucial in decoding (2) to 
provide good performance. In [8] we used kernel logistic regression [10], with regular
ized maximum cross-entropy, to model conditional probabilities. A different probabilistic 
model that offers a sparser representation is introduced below. 

2.2 Training Formulation 

For training the MAP forward decoder, we assume access to a training sequence with la
bels (class memberships). For instance, the TIMIT speech database comes labeled with 
phonemes. Continuous (soft) labels could be assigned rather than binary indicator labels, 
to signify uncertainty in the training data over the classes. Like probabilities, label assign-
ments are normalized: L;:Ol ydn] = 1, ydn] :::: 0. 
The objective of training is to maximize the cross-entropy of the estimated probabilities 
adn] given by (1) with respect to the labels Ydn] over all classes i and training data n 

N - 1 8 - 1 

H = L L Yd n]log adn] (3) 
n = O i = O 

To provide capacity control we introduce a regularizer fl( w) in the objective function [II). 
The parameter space w can be partitioned into disjoint parameter vectors W ij and bij for 
each pair of classes i , j = 0, ... , S - 1 such that Pij [n] depends only on W ij and bij . 
(The parameter bij corresponds to the bias term in the standard SVM formulation). The 
regularizer can then be chosen as the L2 norm of each disjoint parameter vector, and the 
objective function becomes 

N - 1 8 - 1 1 8 - 1 8 - 1 

H = C L Lydn]logadn] - "2 L L IW ij l2 

n = O i = O j = O i = O 

(4) 

where the regularization parameter C controls complexity versus generalization as a bias
variance trade-off [11). The objective function (4) is similar to the primal formulation of 
a large margin classifier [4]. Unlike the convex (quadratic) cost function of SVMs, the 
formulation (4) does not have a unique solution and direct optimization could lead to poor 
local optima. However, a lower bound of the objective function can be formulated so that 
maximizing this lower bound reduces to a set of convex optimization sub-problems with 
an elegant dual formulation in terms of support vectors and kernels. Applying the convex 
property of the - log(.) function to the convex sum in the forward estimation (1), we obtain 
directly 

(5) 

where 
N - 1 8 - 1 8 - 1 

H j = L Cj [n] L yd n]log Pij [n] - ~ L IWij 12 (6) 
n = O i = O i = O 

with effective regularization sequence 

Cj[n] = Caj[n - 1] . (7) 

Disregarding the intricate dependence of (7) on the results of (6) which we defer to the fol
lowin~ section, the formulation (6) is equivalent to regression of conditional probabilities 
Pij [n j from labeled data x [n] and Yi [n], for a given outgoing state j. 



2.3 Kernel Logistic Probability Regression 

Estimation of conditional probabilities Pr( ilx) from training data x[n] and labels Yi [n] can 
be obtained using a regularized form of kernel logistic regression [10]. For each outgoing 
state j, one such probabilistic model can be constructed for the incoming state i conditional 
onx[n]: 

5 - 1 

Pij [n] = exp(fij (x [n])) I L exp(f8j (x[n])) (8) 
8= 0 

As with SVMs, dot products in the expression for i ij (x) in (8) convert into kernel expan
sions over the training data x[m] by transforming the data to feature space [12] 

i ij (x) Wij ·X + bij 
LX?] x[m].x + bij (9) 
m 

<p ( ) '" ----+ 6 A0 K(x [m], x) + bij 
m 

where K (', .) denotes any symmetric positive-definite kernel l that satisfies the Mercer con
dition, such as a Gaussian radial basis function or a polynomial [11]. 
Optimization of the lower-bound in (5) requires solving M disjoint but similar sub
optimization problems (6). The subscript j is omitted in the remainder of this section for 
clarity. The (primal) objective function of kernel logistic regression expresses regularized 
cross-entropy (6) of the logistic model (8) in the form [13, 14] 

1 N M 

H = - L 21wi l2 + C L [L Ydm]jk(x[m]) _log(e!I (x[m]) + ... + efM(x[m]) ]. (10) 
i m i 

The parameters A0 in (9) are determined by minimizing a dual formulation of the objective 
function (10) obtained through the Legendre transformation, which for logistic regression 
takes the form of an entropy-based potential function in the parameters [10] 

MIN N N 

H e = L [2 L L A~QlmAZO + C L (Ydm] - AZOIC) log(ydm] - AZOIC)] (11) 
. I m m 

subject to constraints 

LAZO 0 (12) 
m 

LAZO 0 (13) 

Am 
2 < Cydm] (14) 

There are two disadvantages of using the logistic regression dual directly: 

1. The solution is non-sparse and all the training points contribute to the final solu
tion. For tasks involving large data sets like phone recognition this turns out to be 
prohibitive due to memory and run-time constraints. 

2. Even though the dual optimization problem is convex, it is not quadratic and pre
cludes the use of standard quadratic programming (QP) techniques. One has to 
resort to Newton-Raphson or other nonlinear optimization techniques which com
plicate convergence and require tuning of additional system parameters. 

I K(x , y) = <I>(x).<I>(y) . The map <1>(-) need not be computed explicitly, as it only appears in 
inner-product form. 



2.4 GiniSVM formulation 

The GiniSVM probabilistic model [15] provides a sparse alternative to logistic regres
sion. A quadratic ('Gini' [16]) index replaces entropy in the dual formulation of logistic 
regression. The 'Gini' index provides a lower bound of the dual logistic functional, and its 
quadratic form produces sparse solutions as with support vector machines. The tightness 
of the bound provides an elegant trade-off between approximation and sparsity. 
Jensen 's inequality (logp ::::; P - 1) formulates the lower bound for the entropy term in (11) 
in the form of the multivariate Gini impurity index [16]: 

M M 

1- LP; ::::; - LPi logpi (15) 

where 0 ::::; Pi ::::; 1, Vi and L,i Pi = 1. Both forms of entropy - L,~ Pi log Pi and 1 -

L,~ PT reach their maxima at the same values Pi == 1/ M corresponding to a uniform 
distribution. As in the binary case, the bound can be tightened by scaling the Gini index 
with a multiplicative factor '1 ~ 1, of which the particular value depends on M.2 The 
GiniSVM dual cost function Hg is then given by 

M I N N N 

H g = L [2 LL>'~Qlm>'7' +'YC(L (ydm]- >'7'/C)2 - 1)] (16) 
. 1 m m 

The convex quadratic cost function (16) with constraints in (11) can now be minimized 
directly using standard quadratic programming techniques. The primary advantage of the 
technique is that it yields sparse solutions and yet approximates the logistic regression 
solution very well [15]. 

2.5 Online GiniSVM Training 

For very large data sets such as TIMIT, using a QP approach to train GiniSVM may still 
be prohibitive even through sparsity drastically in the trained model reduces the number 
of support vectors. An on-line estimation procedure is presented, that computes each co
efficient >'i in turn from single presentation of the data {x[n], ydn]} . A line search in 
the parameter >'i and the bias bi performs stochastic steepest descent of the dual objective 
function (16) of the form 

(17) 

n 

bi ~ bi + L>'~ (18) 
1 

where [x] + denotes the positive part of x. The normalization factor zn is determined by 
equation 

M n 

L [Cydn](Qnn + 2) + f dn] + 2 L >.f - znl + = C(Qnn + 2) + 2'1 (19) 
£ 

solved in at most M algorithmic iterations. 

3 Recursive FDKM Training 

The weights (7) in (6) are recursively estimated using an iterative procedure reminiscent 
of (but different from) expectation maximization. The procedure involves computing new 
estimates of the sequence Ctj [n - 1] to train (6) based on estimates of Pij using previous 
values of the parameters >.i] . The training proceeds in a series of epochs, each refining the 
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Figure 2: Iterations involved in training FDKM on a trellis based on the Markov model of 
Figure I. During the initial epoch, parameters of the probabilistic model, conditioned on 
the observed labelfor the outgoing state at time n - 1, of the state at time n are trainedfrom 
observed labels at time n. During subsequent epochs, probability estimates of the outgoing 
state at time n - lover increasing forward decoding depth k = 1, ... K determine weights 
assigned to data nfor training each of the probabilistic models conditioned on the outgoing 
state. 

estimate of the sequence CYj[n - 1] by increasing the size of the time window (decoding 
depth, k) over which it is obtained by the forward algorithm (1). 
The training steps are illustrated in Figure 2 and summarized as follows: 

1. To bootstrap the iteration for the first training epoch (k = 1), obtain initial values 
for CYj[n - 1] from the labels of the outgoing state, CY j [n - 1] = Yj [n - 1]. This 
corresponds to taking the labels Ydn - 1] as true state probabilities which corre
sponds to the standard procedure of using fragmented data to estimate transition 
probabilities. 

2. Train logistic kernel machines, one for each outgoing class j, to estimate the pa
rameters in Pij[n ], i, j = 1, .. , S from the training data x[n] and labels Yd n ], 
weighted by the sequence CYj [n - 1]. 

3. Re-estimate CYj [n - 1] using the forward algorithm (1) over increasing decoding 
depth k, by initializing CYj [n - k] to y[n - k]. 

4. Re-train, increment decoding depth k, and re-estimate CYj [n - 1], until the final 
decoding depth is reached (k = K). 

The performance of FDKM training depends on the final decoding depth K, although ob
served variations in generalization performance for large values of K are relatively smalL 
A suitable value can be chosen a priori to match the extent of temporal dependency in the 
data. For phoneme classification in speech, the decoding depth can be chosen according to 
the length of a typical syllable. 
An efficient procedure to implement the above algorithm is discussed in [15]. 

4 Experiments and Results 

The performance of FDKM was evaluated on the full TIMIT dataset [17], consisting of 
labeled continuous spoken utterances. The 60 phone classes presented in TIMIT were first 
collapsed onto 39 classes according to standard folding techniques [6]. The training set 
consisted of 6,300 sentences spoken by 63 speakers, resulting in 177,080 phone instances. 
The test set consisted of 192 sentences spoken by 24 speakers. 
The speech signal was first processed by a pre-emphasis filter with transfer function 
1 - 0.97z - 1. Subsequently, a 25 ms Hamming window was applied over 10 ms shifts 
to extract a sequence of phonetic segments. Cepstral coefficients were extracted from the 
sequence, combined with their first and second order time differences into a 39-dimensional 
vector. Cepstral mean subtraction and speaker normalization were subsequently applied. 

2Unlike the binary case (M = 2), the factor 'Y for general M cannot be chosen to match the two 
maxima at Pi = 11M. 



Table 1: Performance Evaluation of FDKM (K = 10) on TIMIT 
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Figure 3: Recognition rate as afunction of decoding depth k = 1, . . . K. 

Each phone utterance were then subdivided into three segments with relative proportions 
4:3:4 [18]. The features in the three segments were individually averaged and concatenated 
to obtain a 117 -dimensional feature vector. 
Evaluation on the test was performed using thresholding of state probabilities in the MAP 
forward decoding (2) [19], with threshold 0.25. The decoded phone sequence was then 
compared with the transcribed sequence using Levenshtein's distance to evaluate differ
ent sources of errors. Multiple runs of identical phones in the decoded and transcribed 
sequences were collapsed to single phone instances to reflect true insertion errors. 
Table 1 summarizes the results of the experiments with FDKM on TIMIT for different 
values of the regularization constant C. The recognition performance is comparable to 
the state of the art using HMMs and other approaches, in the upper 70% and lower 80% 
range [2, 5, 20]. Figure 3 illustrates the improvement in recognition rate with increasing 
decoding depth k. The optimum value k ;::::; 10 corresponds to inter-phonetic dependencies 
on a time scale of 100 ms. 

5 Conclusion 

Experiments with FDKM on the TIMIT corpus have demonstrated levels of speaker
independent continuous phone recognition accuracy comparable to or better than other 
approaches that use HMMs and their various extensions. FDKM improves decoding and 
generalization performance for data with embedded sequential structure, providing an el
egant tradeoff between learning temporal versus spatial dependencies. The recursive es
timation procedure reduces or masks the effect of noisy or missing labels Yj [n]. Further 
improvements can be expected by tuning of hyper-parameters and improved representation 
of acoustic features. 
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