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Abstract 

Learning curves for Gaussian process regression are well understood 
when the 'student' model happens to match the 'teacher' (true data 
generation process). I derive approximations to the learning curves 
for the more generic case of mismatched models, and find very rich 
behaviour: For large input space dimensionality, where the results 
become exact, there are universal (student-independent) plateaux 
in the learning curve, with transitions in between that can exhibit 
arbitrarily many over-fitting maxima; over-fitting can occur even 
if the student estimates the teacher noise level correctly. In lower 
dimensions, plateaux also appear, and the learning curve remains 
dependent on the mismatch between student and teacher even in 
the asymptotic limit of a large number of training examples. Learn
ing with excessively strong smoothness assumptions can be partic
ularly dangerous: For example, a student with a standard radial 
basis function covariance function will learn a rougher teacher func
tion only logarithmically slowly. All predictions are confirmed by 
simulations. 

1 Introduction 

There has in the last few years been a good deal of excitement about the use 
of Gaussian processes (GPs) as an alternative to feedforward networks [1]. GPs 
make prior assumptions about the problem to be learned very transparent, and 
even though they are non-parametric models, inference- at least in the case of 
regression considered below- is relatively straightforward. One crucial question 
for applications is then how 'fast' GPs learn, i.e. how many training examples are 
needed to achieve a certain level of generalization performance. The typical (as 
opposed to worst case) behaviour is captured in the learning curve, which gives the 
average generalization error t as a function of the number of training examples n. 
Good bounds and approximations for t(n) are now available [1, 2, 3, 4, 5], but these 
are mostly restricted to the case where the 'student' model exactly matches the true 
'teacher' generating the datal. In practice, such a match is unlikely, and so it is 

lThe exception is the elegant work of Malzahn and Opper [2], which uses a statistical 
physics framework to derive approximate learning curves that also apply for any fixed 
target function. However, this framework has not yet to my knowledge been exploited to 



important to understand how GPs learn if there is some model mismatch. This is 
the aim of this paper. 

In its simplest form, the regression problem is this: We are trying to learn a function 
B* which maps inputs x (real-valued vectors) to (real-valued scalar) outputs B*(x). 
We are given a set of training data D , consisting of n input-output pairs (xl, yl) ; 
the training outputs yl may differ from the 'clean' teacher outputs B*(xl ) due to 
corruption by noise. Given a test input x, we are then asked to come up with a 
prediction B(x), plus error bar, for the corresponding output B(x). In a Bayesian 
setting, we do this by specifying a prior P(B) over hypothesis functions , and a like
lihood P(DIB) with which each B could have generated the training data; from this 
we deduce the posterior distribution P(BID) ex P(DIB)P(B). For a GP, the prior is 
defined directly over input-output functions B; this is simpler than for a Bayesian 
feedforward net since no weights are involved which would have to be integrated 
out. Any B is uniquely determined by its output values B(x) for all x from the in
put domain, and for a GP, these are assumed to have a joint Gaussian distribution 
(hence the name). If we set the means to zero as is commonly done, this distri
bution is fully specified by the covariance function (B(x)B(xl))o = C(X,XI). The 
latter transparently encodes prior assumptions about the function to be learned. 
Smoothness, for example, is controlled by the behaviour of C(x, Xl) for Xl -+ x: The 
Ornstein-Uhlenbeck (OU) covariance function C(x, Xl) = exp( -Ix - xliiI) produces 
very rough (non-differentiable) functions , while functions sampled from the radial 
basis function (RBF) prior with C(x, Xl) = exp[-Ix - x/12 1(212)] are infinitely differ
entiable. Here I is a lengthscale parameter, corresponding directly to the distance 
in input space over which we expect significant variation in the function values. 

There are good reviews on how inference with GPs works [1 , 6], so I only give 
a brief summary here. The student assumes that outputs y are generated from 
the 'clean' values of a hypothesis function B(x) by adding Gaussian noise of x
independent variance (J2. The joint distribution of a set of training outputs {yl} 
and the function values B(x) is then also Gaussian, with covariances given (under 
the student model) by 

(ylym) = C(xl,xm) + (J2Jlm = (K)lm, (yIB(x)) = C(xl,x) = (k(X))1 
Here I have defined an n x n matrix K and an x-dependent n-component vector 
k(x) . The posterior distribution P(BID) is then obtained by conditioning on the 
{yl}; it is again Gaussian and has mean and variance 

(B(x))o ID == B(xID) = k(X)TK-1y (1) 

((B(x) - B(X))2)o ID C(x ,x) - k(X)TK-1k(x) (2) 
From the student's point of view, this solves the inference problem: The best pre
diction for B(x) on the basis of the data D is B(xID) , with a (squared) error bar 
given by (2). The squared deviation between the prediction and the teacher is 
[B(xID) - B*(x)]2; the average generalization error (which, as a function of n, de
fines the learning curve) is obtained by averaging this over the posterior distribution 
of teachers, all datasets, and the test input x: 

E = ((([B(xID) - B*(xWk ID)D)x (3) 
Now of course the student does not know the true posterior of the teacher; to 
estimate E, she must assume that it is identical to the student posterior, giving 
from (2) 

E = ((([B(xID) - B(X)]2)o ID)D)x = ((C(x,x) - k(xfK-1k(X)){xl})x (4) 

consider systematically the effects of having a mismatch between the teacher prior over 
target functions and the prior assumed by the student . 



where in the last expression I have replaced the average over D by one over the 
training inputs since the outputs no longer appear. If the student model matches 
the true teacher model, E and € coincide and give the Bayes error, i.e. the best 
achievable (average) generalization performance for the given teacher. 

I assume in what follows that the teacher is also a GP, but with a possibly different 
covariance function C* (x, x') and noise level (}";. This allows eq. (3) for E to be 
simplified, since by exact analogy with the argument for the student posterior 

(()* (x ) k iD = k* (x) TK :;-1 y , ((); (x) )O. ID = (()* (x ))~. I D +C* (x, x) - k* (x) TK :;-1 k * (x) 

and thus , abbreviating a(x) = K-1k(x) - K ;;-1k*(x), 

E = ((a(x)TyyTa(x) + C*(x,x) - k*(X)TK:;-1k*(x))D)x 

Conditional on the training inputs , the t raining outputs have a Gaussian distribu
tion given by the true (teacher) model; hence (yyT){yl} l{xl } = K *, giving 

E = ((C*(x,x) - 2k*(x)TK-1k(x) + k(X)T K -1K *K -1k(x )){xl})x (5) 

2 Calculating the learning curves 

An exact calculation of the learning curve E(n) is difficult because of the joint av
erage in (5) over the training inputs X and the test input x . A more convenient 
starting point is obtained if (using Mercer's theorem) we decompose the covariance 
function into its eigenfunctions ¢i(X) and eigenvalues Ai, defined w.r.t. the input 
distribution so that (C(x, X') ¢i (X') )x' = Ai¢i(X) with the corresponding normaliza
tion (¢i(X)¢j(x))x = bij. Then 

00 00 

i=1 i=1 

For simplicity I assume here that the student and teacher covariance functions have 
the same eigenfunctions (but different eigenvalues). This is not as restrictive as it 
may seem; several examples are given below. The averages over the test input x 
in (5) are now easily carried out: E .g. for the last term we need 

((k(x)k(x)T)lm)x = L AiAj¢i(Xl)(¢i(X)¢j (x))x¢j (xm) = L A7¢i(Xl )¢i(Xm) 
ij i 

Introducing the diagonal eigenvalue matrix (A)ij = Aibij and the 'design matrix ' 
(<I»li = ¢i(Xl ), this reads (k(x)k(x)T)x = <I>A2<I>T . Similarly, for the second term 
in (5) , (k(x)k;(x))x = <I>AA*<I>T, and (C*(x,x))x = trA*. This gives, dropping 
the training inputs subscript from the remaining average, 

E = (tr A* - 2tr<I>AA*<I>TK-1 + tr <I>A2<I>TK - 1K *K - 1) 

In this new representation we also have K = (}"21 + <I>A<I>T and similarly for K* ; 
for the inverse of K we can use the Woodbury formula to write K -1 = (}" -2 [1 -
(}" - 2<I>g<I> T], where 9 = (A - 1 + (}" - 2<I> T <I> )- 1. Inserting these results , one finds after 
some algebra that 

E = (}";(}" -2 [(tr g) - (tr gA -1 g)] + (tr gA*A -29) 

which for the matched case reduces to the known result for the Bayes error [4] 

€ = (tr g) 

(7) 

(8) 



Eqs. (7,8) are still exact. We now need to tackle the remaining averages over training 
inputs. Two of these are of the form (tr QM9) ; if we generalize the definition of 
Q to Q = (A -1 + vI + wM + (/-2IJ>TIJ»-1 and define 9 = (tr Q) , then they reduce 
to (trQMQ) = -agjaw. (The derivative is taken at v = w = 0; the idea behind 
introducing v will become clear shortly.) So it is sufficient to calculate g. To do 
this, consider how Q changes when a new example is added to the training set. One 
has 

Q(n + 1) - Q(n) = [Q-1(n) + (/-2 1jJ1jJTJ -1 _ Q(n) = _ Q(n)1jJ1jJTQ(n) (9) 
(/2 + 1jJTQ(n)1jJ 

in terms of the vector 1jJ with elements (1jJ )i = <Pi(xn+d, using again the Woodbury 
formula. To obtain the change in 9 we need the average of (9) over both the 
new training input X n +1 and all previous ones. This cannot be done exactly, but 
we can approximate by averaging numerator and denominator separately; taking 
the trace then gives g(n + 1) - g(n) = -(trQ2(n))j[(/2 + g(n)]. Now, using our 
auxiliary parameter v, -(trQ2 ) = agjav; if we also approximate n as continuous, 
we get the simple partial differential equation agjan = (agjaV)j((/2 + g) with the 
initial condition gln=o = tr (A -1 + vI + WM)-1. Solving this using the method of 
characteristics [7] gives a self-consistent equation for g, 

9 = tr [A -1 + (v + (/2: g) 1+ wM r1 

The Bayes error (8) is E = glv=w=o and therefore obeys 

E = trG, G -1 = A -1 + _n_ I 
(/2 + E 

(10) 

(11) 

within our approximation (called 'LC' in [4]). To obtain E, we differentiate both 
sides of (10) w.r.t. w, set v = w = 0 and rearrange to give 

(tr QM9) = -agjaw = (tr MG2)j[1 - (tr G 2)nj((/2 + E)2] 

Using this result in (7), with M = A -1 and M = A -1 A*A -1, we find after some 
further simplifications the final (approximate) result for the learning curve: 

, (/; tr G 2 + n-1 ((/2 + E)2 tr A*A -2G2 
E = E ----'---::------::c-::---':-:---;:---:-;:---:----::--::c-::--

(/2trG2 +n-1((/2 +E)2trA-1G2 
(12) 

which transparently shows how in the matched case E and E become identical. 

3 Examples 

I now apply the result for the learning curve (11 ,12) to some exemplary learning 
scenarios. First , consider inputs x which are binary vectors2 with d components 
Xa E {-I , I} , and assume that the input distribution is uniform. We consider 
covariance functions for student and teacher which depend on the product x . Xl 

only; this includes the standard choices (e.g. OU and RBF) which depend on the 
Euclidean distance Ix - xII, since Ix - x/12 = 2d - 2x . Xl. All these have the same 
eigenfunctions [9], so our above assumption is satisfied. The eigenfunctions are 
indexed by subsets p of {I, 2 ... d} and given explicitly by <pp(x) = ITa EP Xa' The 

2This scenario may seem strange, but simplifies the determination of the eigenfunctions 
and eigenvalues. For large d, one expects other distributions with continuously varying 
x and the same first- and second-order statistics ((Xa) = 0, (XaXb) = 8ab ) to give similar 
results [8] . 



corresponding eigenvalues depend only on the size s = Ipl of the subsets and are 
therefore (~)-fold degenerate; letting e = (1,1 ... 1) be the 'all ones' input vector, 
they have the values As = (C(x, e)¢>p(x))x (which can easily be evaluated as an 
average over two binomially distributed variables, counting the number of + 1 's in 
x overall and among the Xa with a E p). With the As and A; determined, it is then 
a simple matter to evaluate the predicted learning curve (11,12) numerically. First, 
though, focus on the limit of large d, where much more can be said. If we write 
C(X,XI) = f(x· xl/d), the eigenvalues become, for d -+ 00, As = d-sf(s)(O) and 
the contribution to C(x, x) = f(l) from the s-th eigenvalue block is As == (~)As -+ 
f(s)(O)/s!, consistent with f(l) = 2::o f(s)(0)/s! The As, because of their scaling 
with d, become infinitely separated for d -+ 00. For training sets of size n = O(dL), 
we then see from (11) that eigenvalues with s > L contribute as if n = 0, since 
As » n / (u2 + €); they have effectively not yet been learned. On the other hand, 
eigenvalues with s < L are completely suppressed and have been learnt perfectly. 
We thus have a hierarchical learning scenario, where different scalings of n with 
d-as defined by L-correspond to different 'learning stages'. Formally, we can 
analyse the stages separately by letting d -+ 00 at a constant ratio a = n/(f) of the 
number of examples to the number of parameters to be learned at stage L (note 
(f) = O(dL) for large d). An independent (replica) calculation along the lines of 
Ref. [8] shows that our approximation for the learning curve actually becomes exact 
in this limit. The resulting a-dependence of to can be determined explicitly: Set 
h = 2:s::=:L As (so that fa = f(I)) and similarly for fi. Then for large a , 

to = fL+1 + (fL+1 + u;)a- l + O(a- 2 ) (13) 
This implies that, during successive learning stages, (teacher) eigenvalues are learnt 
one by one and their contribution eliminated from the generalization error, giving 
plateaux in the learning curve at to = fi, f2, .... These plateaux, as well as the 
asymptotic decay (13) towards them, are universal [8], i.e. student-independent. 
The (non-universal) behaviour for smaller a can also be fully characterized: Con
sider first the simple case of linear percept ron learning (see e.g. [7]), which corre
sponds to both student and teacher having simple dot-product covariance functions 
C (x, Xl) = C * (x, Xl) = X· xl/d. In this case there is only a single learning stage (only 
Al = A~ = 1 are nonzero), and to = r(a) decays from r(O) = 1 to r(oo) = 0, with 
an over-fitting maximum around a = 1 if u2 is sufficiently small compared to u;. 
In terms of this function r(a), the learning curve at stage L for general covariance 
functions is then exactly given by to = fL+1 + ALr(a) if in the evaluation of r(a) 
the effective noise levels &2 = (f L+1 + ( 2 ) / AL and &; = (fL+1 + u;) / A L are used. 
Note how in &;, the contribution fL+1 from the not-yet-Iearned eigenvalues acts as 
effective noise, and is normalized by the amount of 'signal ' AL = fL - fL+l available 
at learning stage L. The analogous definition of &2 implies that, for small u 2 and 
depending on the choice of student covariance function , there can be arbitrarily 
many learning stages L where &2 « &;, and therefore arbitrarily many over-fitting 
maxima in the resulting learning curves. From the definitions of &2 and &; it is 
clear that this situation can occur even if the student knows the exact teacher noise 
level, i.e. even if u 2 = u;. 

Fig. 1(left) demonstrates that the above conclusions hold not just for d -+ 00; even 
for the cases shown, with d = 10, up to three over-fitting maxima are apparent. 
Our theory provides a very good description of the numerically simulated learning 
curves even though, at such small d, the predictions are still significantly different 
from those for d -+ 00 (see Fig. 1 (right) ) and therefore not guaranteed to be exact. 

In the second example scenario, I consider continuous-valued input vectors, uni-
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Figure 1: Left: Learning curves for RBF student and teacher, with uniformly dis
tributed, binary input vectors with d = 10 components. Noise levels: Teacher 
u; = 1, student u2 = 10-4, 10-3 , ... , 1 (top to bottom). Length scales: Teacher 
l* = d1/2, student l = 2d1/2. Dashed: numerical simulations, solid: theoretical 
prediction. Right: Learning curves for u 2 = 10- 4 and increasing d (top to bottom: 
10, 20, 30, 40, 60, 80, [bold] 00). The x-axis shows a = n/(f) , for learning stages 
L = 1,2,3; the dashed lines are the universal asymptotes (13) for d -+ 00. 

formly distributed over the unit interval [0 ,1]; generalization to d dimensions 
(x E [O , I]d) is straightforward. For covariance functions which are stationary, i.e. 
dependent on x and x' only through x - x' , and assuming periodic boundary condi
tions (see [4] for details), one then again has covariance function-independent eigen
functions. They are indexed by integers3 q, with cPq(x) = e21riqx; the corresponding 
eigenvalues are Aq = J dx C(O, x)e-27riqx . For the ('periodified') RBF covariance 
function C(x ,x' ) = exp[-(x - X ' )2/(2l2)], for example, one has Aq ex exp(-ip /2), 
where ij = 27rlq. The OU case C(x, x') = exp( -Ix - x/l/l), on the other hand, 
gives Aq ex (1 + ij2) - 1, thus Aq ex q- 2 for large q. I also consider below covariance 
functions which interpolate in smoothness between the OU and RBF limits: E.g. 
the MB2 (modified Bessel) covariance C(x, x') = e-a (1 + a), with a = Ix - x /l /l, 
yields functions which are once differentiable [5]; its eigenvalues Aq ex (1 + ij2)-2 
show a faster asymptotic power law decay, Aq ex q-4, than those of the OU covari
ance function. To subsume all these cases I assume in the following analysis of the 
general shape of the learning curves that Aq ex q-r (and similarly A~ ex q-r.). Here 
r = 2 for OU, r = 4 for MB2, and (due to the faster-than-power law decay of its 
eigenvalues) effectively r = 00 for RBF. 

From (11 ,12), it is clear that the n-dependence of the Bayes error E has a strong 
effect on the true generalization error E. From previous work [4], we know that E(n) 
has two regimes: For small n, where E » u2 , E is dominated by regions in input 
space which are too far from the training examples to have significant correlation 
with them, and one finds E ex n-(r-1). For much larger n, learning is essentially 
against noise, and one has a slower decay E ex (n/u2)-(r- 1) /r . These power laws can 
be derived from (11) by approximating factors such as [A;;-l + n/ (u2 + E)]- l as equal 
to either Aq or to 0, depending on whether n / (u2 + E) < or > A;;-l. With the same 
technique, one can estimate the behaviour of E from (12). In the small n-regime, one 
finds E ~ C1 u; + C2n-(r. -1), with prefactors C1, C2 depending on the student. Note 

3Since Aq = A_q, one can assume q ~ 0 if all Aq for q > 0 are taken as doubly 
degenerate. 
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Figure 2: Learning curves for inputs x uniformly distributed over [0,1]. Teacher: 
MB2 covariance function, lengthscale I. = 0.1, noise level (7; = 0.1; student length
scale I = 0.1 throughout. Dashed: simulations, solid: theory. Left: OU student 
with (72 as shown. The predicted plateau appears as (72 decreases. Right: Stu
dents with (72 = 0.1 and covariance function as shown; for clarity, the RBF and 
OU results have been multiplied by v'IO and 10, respectively. Dash-dotted lines 
show the predicted asymptotic power laws for MB2 and OU; the RBF data have a 
persistent upward curvature consistent with the predicted logarithmic decay. Inset: 
RBF student with (72 = 10-3 , showing the occurrence of over-fitting maxima. 

that the contribution proportional to (7; is automatically negligible in the matched 
case (since then E = € » (72 = (7; for small n); if there is a model mismatch, however, 
and if the small-n regime extends far enough, it will become significant. This is the 
case for small (72; indeed, for (72 -+ 0, the 'small n' criterion € » (72 is satisfied for 
any n. Our theory thus predicts the appearance of plateaux in the learning curves, 
becoming more pronounced as (72 decreases; Fig. 2 (left ) confirms this4. Numerical 
evaluation also shows that for small (72, over-fitting maxima may occur before the 
plateau is reached, consistent with simulations; see inset in Fig. 2(right). In the 
large n-regime (€ « (72), our theory predicts that the generalization error decays as 
a power law. If the student assumes a rougher function than the teacher provides 
(r < r.) , the asymptotic power law exponent E ex: n-(r-l)/r is determined by the 
student alone. In the converse case, the asymptotic decay is E ex: n-(r.-l) / r and 
can be very slow, actually becoming logarithmic for an RBF student (r -+ CXl). For 
r = r., the fastest decay for given r. is obtained, as expected from the properties of 
the Bayes error. The simulation data in Fig. 2 are compatible with these predictions 
(though the simulations cover too small a range of n to allow exponents to be 
determined precisely). It should be stressed that the above results imply that there 
is no asymptotic regime of large training sets in which the learning curve assumes a 
universal form, in contrast to the case of parametric models where the generalization 
error decays as E ex: lin for sufficiently large n independently of model mismatch 
(as long as the problem is learnable at all). This conclusion may seem counter
intuitive, but becomes clear if one remembers that a GP covariance function with 
an infinite number of nonzero eigenvalues Ai always has arbitrarily many eigenvalues 

4If (J2 = 0 exactly, the plateau will extend to n -+ 00. With hindsight, this is clear: 
a GP with an infinite number of nonzero eigenvalues has no limit on the number of its 
'degrees of freedom' and can fit perfectly any amount of noisy training data, without ever 
learning the true teacher function . 



that are arbitrarily close to zero (since the Ai are positive and 2:iAi = (C(x,x)) is 
finite). Whatever n, there are therefore many eigenvalues for which Ail» n/u2 , 

corresponding to degrees of freedom which are still mainly determined by the prior 
rather than the data (compare (11)). In other words, a regime where the data 
completely overwhelms the mismatched prior- and where the learning curve could 
therefore become independent of model mismatch- can never be reached. 

In summary, the above approximate theory makes a number of non-trivial predic
tions for GP learning with mismatched models, all borne out by simulations: for 
large input space dimensions, the occurrence of multiple over-fitting maxima; in 
lower dimensions, the generic presence of plateaux in the learning curve if the stu
dent assumes too small a noise level u 2 , and strong effects of model mismatch on the 
asymptotic learning curve decay. The behaviour is much richer than for the matched 
case, and could guide the choice of (student) priors in real-world applications of GP 
regression; RBF students, for example, run the risk of very slow logarithmic decay 
of the learning curve if the target (teacher) is less smooth than assumed. 

An important issue for future work- some of which is in progress- is to analyse to 
which extent hyperparameter tuning (e.g. via evidence maximization) can make GP 
learning robust against some forms of model mismatch, e.g. a misspecified functional 
form of the covariance function. One would like to know, for example, whether a 
data-dependent adjustment of the lengthscale of an RBF covariance function would 
be sufficient to avoid the logarithmically slow learning of rough target functions. 
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