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Abstract

We present a simple approach for computing reasonable policies
for factored Markov decision processes (MDPs), when the opti-
mal value function can be approximated by a compact linear form.
Our method is based on solving a single linear program that ap-
proximates the best linear fit to the optimal value function. By
applying an efficient constraint generation procedure we obtain an
iterative solution method that tackles concise linear programs. This
direct linear programming approach experimentally yields a signif-
icant reduction in computation time over approximate value- and
policy-iteration methods (sometimes reducing several hours to a
few seconds). However, the quality of the solutions produced by
linear programming is weaker—usually about twice the approxi-
mation error for the same approximating class. Nevertheless, the
speed advantage allows one to use larger approximation classes to
achieve similar error in reasonable time.

1 Introduction

Markov decision processes (MDPs) form a foundation for control in uncertain and
stochastic environments and reinforcement learning. Standard methods such as
value-iteration, policy-iteration and linear programming can be used to produce
optimal control policies for MDPs that are expressed in explicit form; that is, the
policy, value function and state transition model are all represented in a tabular
manner that explicitly enumerates the state space. This renders the approaches
impractical for all but toy problems. The real goal is to achieve solution methods
that scale up reasonably in the size of the state description, not the size of the state
space itself (which is usually either exponential or infinite).

There are two basic premises on which solution methods can scale up: (1) exploiting
structure in the MDP model itself (i.e. structure in the reward function and the state
transition model); and (2) exploiting structure in an approximate representation of
the optimal value function (or policy). Most credible attempts at scaling-up have
generally had to exploit both types of structure. Even then, it is surprisingly difficult
to formulate an optimization method that can handle large state descriptions and
yet simultaneously produce value functions or policies with small approximation
errors, or errors that can be bounded tightly. In this paper we investigate a simple
approach to determining approximately optimal policies based on a simple direct



linear programming approach. Specifically, the idea is to approximate the optimal
value function by formulating a single linear program and exploiting structure in the
MDP and the value function approximation to solve this linear program efficiently.

2 Preliminaries

We consider MDPs with finite state and action spaces and consider the goal of max-
imizing infinite horizon discounted reward. In this paper, states will be represented
by vectors x of length n, where for simplicity we assume the state variables 1, ..., Zn
are in {0, 1}; hence the total number of states is NV = 2. We also assume there
is a small finite set of actions A = {ay,...,a,}. An MDP is defined by: (1) a state
transition model P (x’|x, a) which specifies the probability of the next state x’ given
the current state x and action a; (2) a reward function R(x,a) which specifies the
immediate reward obtained by taking action a in state x; and (3) a discount factor
v, 0 < v < 1. The problem is to determine an optimal control policy 7* : X — A
that achieves maximum expected future discounted reward in every state.

To understand the standard solution methods it is useful to define some auxiliary
concepts. For any policy m, the value function V™ : X — IR denotes the expected
future discounted reward achieved by policy 7 in each state x. It turns out that
V™ satisfies a fixed point relationship between the value of current states and the
expected values of future states, given by a backup operator V™ = B"V™, where
B™ operates on arbitrary functions over the state space according to

(B"£)(x) = R(x,m(x)) +7)_ P(x|x, m(x)) f(x')
Another important backup operator is defined with respect to a fixed action a

(B*f)(x) = R(x,a) +7)_ P(x|x,a) f(x')

The action-value function Q™ : X X A — IR denotes the expected future discounted
reward achieved by taking action @ in state x and following policy 7 thereafter;
which must satisfy Q" (x,a) = B®V™. Given an arbitrary function f over states,
the greedy policy mgre(f) with respect to f is defined by

myrel() () = argmax (B ) (x)

Finally, if we let 7* denote the optimal policy and V* denote its value function,
we have the relationship V* = B*V*, where (B*f) (x) = max, (B*f) (x). If, in
addition, we define Q*(x,a) = B?V* then we also have 7*(x) = my.(V*)(x) =
arg max, Q@*(x,a). Given these definitions, the three fundamental methods for cal-
culating 7* can be formulated as:

Policy iteration: Start with an arbitrary policy 7(9). Iterate n(i+1) Wgre(V"(i))
until 71'(1'+1) = 7r(i)_ Return n* = 7|-(’5+1).

Value iteration: Start with an arbitrary function fO, Tterate fUi+1) « p*f()
until || F01) — 0|, < tol. Return 7* = wgre(f(”'l)).

Linear programming: Calculate V* = argmin; ¥, f(x) subject to f(x) >
(B®f) (x) for all @ and x. Return 7* = g (V*)

All three methods can be shown to produce optimal policies for the given MDP
[1, 10] even though they do so in very different ways. However, all three approaches
share the same fundamental limitation that they do not scale up feasibly in n, the
size of the state descriptions. Instead, all of these approaches work with explicit
representations of the policies and value functions that are exponential in n.




3 Exploiting structure

To scale up to large state spaces it is necessary to exploit substantial structure in
the MDP while also adopting some form of approximation for the optimal value
function and policy. The two specific structural assumptions we consider in this
paper are (1) factored MDPs and (2) linear value function approximations. Neither
of these two assumptions alone is sufficient to permit efficient policy optimization for
large MDPs. However, combined, the two assumptions allow approximate solutions
to be obtained for problems involving trillions of states reasonably quickly.

3.1 Factored MDPs

In the spirit of [7, 8, 6] we define a factored MDP to be one that can be rep-
resented compactly by an additive reward function and a factored state transi-
tion model. Specifically, we assume the reward function decomposes as R(x,a) =
z;"‘:l Rg,r(Xq,r) where each local reward function R, , is defined on a small set
of variables x, .. We assume the state transition model P(x’|x,a) can be repre-
sented by a set of dynamic Bayesian networks (DBNs) on state variables—one for
each action—where each DBN defines a compact transition model on a directed
bipartite graph connecting state variables in consecutive time steps. Let x,; de-
note the parents of successor variable z; in the DBN for action a. To allow effi-
cient optimization we assume the parent set x,; contains a small number of state
variables from the previous time step. Given this model, the probability of a suc-
cessor state x’ given a predecessor state x and action a is given by the product
P(X'|x,a) = [Ti=; P(=i|%q,i)-

The main benefit of this factored representation is that it allows large MDPs to
be encoded concisely: if the functions R, ,(X4,r) and P(z}|x,,;) depend on a small
number of variables, they can be represented by small tables and efficiently com-
bined to determine R(x,a) and P(x'|x,a). Unfortunately, as pointed out in [7],
a factored MDP does not by itself yield a feasible method to determining optimal
policies. The main problem is that, even if P and R are factored, the optimal value
function generally does not have a compact representation (nor does the optimal
policy). Therefore, obtaining an exact solution appears to require a return to ex-
plicit representations. However, it turns out that the factored MDP representation
interacts very well with linear value function approximations.

3.2 Linear approximation

One of the central tenets to scaling up is to approximate the optimal value func-
tion rather than calculate it exactly. Numerous schemes have been investigated for
approximating optimal value functions and policies in a compact representational
framework, including: hierarchical decompositions [5], decision trees and diagrams
[3, 12], generalized linear functions [1, 13, 4, 7, 8, 6], neural networks [2], and prod-
ucts of experts [11]. However, the simplest of these is generalized linear functions,
which is the form we investigate below. In this case, we consider functions of the
form f(x) = E;=1 w;b;(x;) where by, ..., b are a fixed set of basis functions, and x;
denotes the variables on which basis b; depends. Combining linear functions with
factored MDPs provides many opportunities for feasible approximation.

The first main benefit of combining linear approximation with factored MDPs is
that the result of applying the backup operator B® to a linear function results in
a compact representation for the action-value function. Specifically if we define




g(x,a) = (B®f)(x) then we can rewrite it as

m k

9(%,0) =Y Rap(Xar) + Y wjca,j(Xa,5)

r=1 j=1

where
Cayj(Xa,j) ——7§ P(x}|a, %a,3)b;(x}) and xa5 = (] *ay

xex

That is, x,,; are the parent variables of z}, and x,; is the union of the parent
variables of z; € xj. Thus, c,,; expresses the fact that in a factored MDP the
expected future value of one component of the approximation depends only on the
current state variables x, j that are direct parents of the variables x; in b;. If the
MDP is sparsely connected then the variable sets in g will not be much larger than
those in f. The ability to represent the state-action value function in a compact
linear form immediately provides a feasible implementation of the greedy policy for
[, since mg,. (f)(x) = arg max, g(x, a) by definition of mg,., and g(x, a) is efficiently
determinable for each x and a. However, it turns out that this is not enough
to permit feasible forms of approximate policy- and value-iteration to be easily
implemented. :

The main problem is that even though B f has a factored form for fixed a, B* f does
not and (therefore) neither does mgre(f). In fact, even if a policy 7 were concisely
represented, B" f would not necessarily have a compact form because 7 usually
depends on all the state variables and thus P(x'|x, 7(x)) = []/=; P(«}|Xr(x):) be-
comes a product of terms that depend on all the state variables. Here [8, 6] introduce
an additional assumption that there is a special “default” action a4 for the MDP
such that all other actions ¢ have a factored transition model P(-|-,a) that differs
from P(-]-,aq) only on a small number of state variables. This allows the greedy
policy mgre(f) to have a compact form and moreover allows B™s~<(f) f to be con-
cisely represented. With some effort, it then becomes possible to formulate feasible
versions of approximate policy- and value-iteration [8, 6].

Approximate policy iteration: Start with default policy W(O)(X) = aq. lterate
FO  argmin; maxy | f(x) — (B™ £)(x)| , 70+ = 1 (FD) until 7+ = £,

Approximate value iteration: Start with arbitrary f ©).  Tterate 7() +
wgre(f(i)) , FU*Y)  arg min; max, |f(x)—(B”(') F)(x)] until ||fE+) —fO||, < tol.

The most expensive part of these iterative algorithms is determining
arg ming maxy |f(x) — (B"(l) f)(x)| which involves solving a linear program miny, . €
subject to —e < fu (x)—(B™ fw)(x) < € for all x. This linear program is problematic
because it involves an exponential number of constraints. A central achievement of
[6] is to show that this system of constraints can be encoded by an equivalent system
of constraints that has a much more compact form. The idea behind this construc-
tion is to realize that searching for the max or a min of a linear function with a
compact basis can be conducted in an organized fashion, and such an organized
search can be encoded in an equally concise constraint system. This construction
allows approximate solutions to MDPs with up to n = 40 state variables (1 trillion
states) to be generated in under 7.5 hours using approximate policy iteration [6].!

It turns out that approximate value iteration is less effective because it takes more
iterations to converge, and in fact can diverge in theory [6, 13].




Our main observation is that if one has to solve linear programs to conduct the
approximate iterations anyway, then it might be much simpler and more efficient
to approximate the linear programming approach directly.

4 Approximate linear programming

Our first idea is simply to observe that a factored MDP and linear value approxima-
tion immediately allow one to directly solve the linear programming approximation
to the optimal value function, which is given by

n}ing f(x) subject to f(x) — (B®f)(x) > 0 for all x and a

where f is restricted to a linear form over a fixed basis. In fact, it is well known [1, 2]
that this yields a linear program in the basis weights w. However, what had not
been previously shown is that given a factored MDP, an equivalent linear program
of feasible size could be formulated. Given the results of [6] outlined above this is
now easy to do. First, one can show that the minimization objective can be encoded
compactly

k
> ) D0 wibs(x))

x x j=1

k
D wiy;  where y; =2""Pl Yy bi(x))
j=1

xj

Here the y; components can be easily precomputed by enumerating assignments
to the small sets of variables in basis functions. Second, as we have seen, the
exponentially many constraints have a structured form. Specifically f(x)—(B* f)(x)
can be represented as

Fx) = (B ) = Y wj(bi(x5) = a,j(Xa3)) = Y Rayr(Xa,r)

Jj=1

which has a simple basis representation that allows the technique of [6] to be used
to encode a constraint system that enforces f(x) — (B®f)(x) > 0 for all z and a
without enumerating the state space for each action.

We implemented this approach and tested it on some of the test problems from [6].
In these problems there is a directed network of computer systems z1, ..., z, where
each system is either up (z; = 1) or down (z; = 0). Systems can spontaneously
go down with some probability at each step, but this probability is increased if an
immediately preceding machine in the network is down. There are n + 1 actions:
do nothing (the default) and reboot machine i. The reward in a state is simply the
sum of systems that are up, with a bonus reward of 1 if system 1 (the server) is
up. Le., R(x) =221+ ;. ,2;. We considered the network architectures shown in
Figure 1 and used the transition probabilities P(z} = 1|z;, parent(z;),a = i) = 0.95
and P(z} = 1|z;, parent(z;),a # 1) = 0.9 if ; = parent(x;) = 1; 0.67 if z; = 1 and
parent(z;) = 0; and 0.01if ; = 0. The discount factor was 7 = 0.95. The first basis
functions we considered were just the indicators on each variable z; plus a constant
basis function (as reported in [6]).

The results for two network architectures are shown in Figure 1. Our approximate
linear programming method is labeled ALP and is compared to the approximate




n = 12 16 20 24 28 32 36 40

N = 4e3 6ed 1le6 2e7 3e8 4e9 T7el0 lel2

server API[6)% 7m  30m 50m 1.3h 1.6h 3h 4.5h 7.5h
APIgen 39s 1.5m 2.3m 4.0m 6.5m 13m 22m  28m

time ALP 4.58 23s l.4m 4.1m 10m 23m  47m  2.4h
ALPgen 0.7s 1.2s 1.8s 2.6s 3.5s 4.58 5.9s 7.0s

ALPgen2 14s 373 1.2m 2.8m 4.7m 6.4m 12m  17m

APIgen 420 k4 921 1270 1591 2747 4325 4438

constraints ALP 1131 2023 3171 4575 6235 8151 10K 13K
ALPgen 38 50 62 74 86 98 110 122

ALPgen2 166 321 514 914 1223 1433 1951 2310

API[G]B 0.30 0.33 0.34 0.35 0.36 0.36 0.37 0.38

UB Bellman APIgen 0.36 0.34 0.33 0.33 0.32 0.32 0.32 0.31
/ Rmax ALP(gen) 0.85 0.82 0.80 0.78 0.78 0.77 0.76 0.76
ALPgen2 0.12 0.14 0.08 0.08 0.10 0.08 0.07 0.07

n = 13 16 22 28 34 40
N = 8ed 6e4 4e6 3e8 2e10 lel2
API[6]* 5m 15m 50m 1.3h 2.7h 5h
APIgen 28 1.6m 3.9m 12m 23m 33m
time ALP ) 0.7s 1.6s 6.0s 20s 56s  2.2m

ALPgen 0.7s 1.0s 1.5s 2.4s 3.4s 4.7s
ALPgen2 17s 33s 19m 5.4m 9.6m 23m

APIgen 363 952 1699 3792 6196 7636
constraints ALP 729 1089 2025 3249 4761 6561
ALPgen 50 69 90 114 135 162

ALPgen2 | 261 381 826 1505 1925 3034

server API[6]” 0.27 029 0.32 0.34 0.35 0.36
UB Bellman  APIgen 0.50 0.46 0.42 0.39 038 037

/ Rmax ALP(gen) | 096 0.82 0.78 0.78 0.77 0.76

ALPgen2 0.21 0.22 0.15 0.06 0.07 0.03

Figure 1: Experimental results (timings on a 750MHz PIII processor, except ?)

policy iteration strategy API described in [6]. Since we did not have the specific
probabilities used in [6] and could only estimate the numbers for API from graphs
presented in the paper, this comparison is only meant to be loosely indicative of
the general run times of the two methods on such problems. (Perturbing the prob-
ability values did not significantly affect our results, but we implemented APIgen
for comparison.) As in [6] our implementation is based on Matlab, using CPLEX
to solve linear programs. Our preliminary results appear to support the hypothe-
sis that direct linear programming can be more efficient than approximate policy
iteration on problems of this type. A further advantage of the linear program-
ming approach is that it is simpler to program and involves solving only one LP.
More importantly, the direct LP approach does not require the MDP to have a spe-
cial default action since the action-value function can be directly extracted using
Tgre(f)(x) = arg max, g(x, a) and g is easily recoverable from f.

Before discussing drawbacks, we note that it is possible to solve the linear program
even more efficiently by iteratively generating constraints as needed. This is now
possible because factored MDPs and linear value approximations allow an efficient
search for the maximally violated constraints in the linear program, which provides
an effective way of generating concise linear programs that can be solved much more
efficiently than those formulated above. Specifically, the procedure ALPgen exploits
the feasible search techniques for minimizing linear functions discussed previously
to efficiently generate a small set of critical constraints, which is iteratively grown
until the final solution is identified; see Figure 2.

2These numbers are estimated from graphs in [6]. The exact probabilities and computer
used for the simulations were not reported in that paper, so we cannot assert an exact
comparison. However, perturbed probabilities have little effect.on the performance of the
methods we tried, and it seems that overall this is a loosely representative comparison of
the general performance of the various algorithms on these problems.




ALPgen

Start with f(®) = 0 and constraints =

Loop

" For each a € 4, compute x? < arg min, £ (x) — (B f®)(x)
constraints < constraints | { constraint(x®'), ..., constraint(x®*)}
Solve f(it1) ming Y f(x) subject to constraints

Until min, @ (x) — (B f(“?)c) (x) > 0—tol for all a

Return g(-,a) = B®f for each a, to represent the greedy policy

Figure 2: ALPgen procedure

The rationale for this procedure is that the main bottleneck in the previous meth-
ods is generating the constraints, not solving the linear programs [6]. Since only a
small number of constraints are active at a solution and these are likely to be the
most violated near the solution, adding only most viclated constraints appears to
be a useful way to proceed. Indeed, Figure 1 shows that ALPgen produces the same
approximate solutions as ALP in a tiny fraction of the time. In the most extreme
case ALPgen produces an approximate solution in 7 seconds while other methods
take several hours on the same problem. The reason for this speedup is explained
by the results which show the numbers of constraints generated by each method.
Further investigation is also required to fully outline the robustness of the con-
straint generation method. In fact, one cannot guarantee that a greedy constraint
generation scheme like the one proposed here will always produce a feasible number
of constraints [9]. Nevertheless, the potential benefits of conservatively generating
constraints as needed seem to be clear. Of course, the main drawback of the direct
linear programming approach over approximate policy iteration is that ALP incurs
larger approximation errors than APIL.

5 Bounding approximation error

It turns out that neither API nor ALP are guaranteed to return the best lin-
ear approximation to the true value function. Nevertheless, it is possible to ef-
ficiently calculate bounds on the approximation errors of these methods, again
by exploiting the structure of the problem: A well known result [14] asserts that
max, V*(x) — VTorel) (x) < 1% maxy f(x) — (B* f)(x) (where in our case f > V).
This upper bound can in turn be bounded by a quantity that is feasible to calculate:
max; f(x)—(B* f)(x) = maxy, min, f(x)—(B*f)(x) < min, maxy f(x)—(B*f)(x).
Thus an upper bound on the error from the optimal value function can be calculated
by performing an efficient search for maxy f(x) — (B®f)(x) for each a.

Figure 1 shows that the measurable error quantity, max, f(x)— (B®f)(x) (reported
as UB Bellman) is about a factor of two larger for the linear programming approach
than for approximate policy iteration on the same basis. In this respect, API ap-
pears to have an inherent advantage (although in the limit of an exhaustive basis
both approaches converge to the same optimal value). To get an indication of the
computational cost required for ALPgen to achieve a similar bound on approxima-
tion error, we repeated the same experiments with a larger basis set that included all
four indicators between pairs of connected variables. The results for this model are
reported as ALPgen2, and Figure 1 shows that, indeed, the bound on approxima-
tion error is reduced substantially—but at the predictable cost of a sizable increase
in computation time. However, the run times are still appreciably smaller than the
policy iteration methods.



Paradoxically, linear programming seems to offer computational advantages over
policy and value iteration in the context of approximation, even though it is widely
held to be an inferior solution strategy for explicitly represented MDPs.
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