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Abstract

Greedy approximation algorithms have been frequently used to obtain
sparse solutions to learning problems. In this paper, we present a general
greedy algorithm for solving a class of convex optimization problems.
We derive a bound on the rate of approximation for this algorithm, and
show that our algorithm includes a number of earlier studies as special
cases.

1 Introduction

The goal of machine learning is to obtain a certain input/output functional relationship from
a set of training examples. In order to do so, we need to start with a model of the functional
relationship. In practice, it is often desirable to find the simplest model that can explain the
data. This is because simple models are often easier to understand and can have significant
computational advantages over more complicated models. In addition, the philosophy of
Occam’s Razor implies that the simplest solution is likely to be the best solution among all
possible solutions,

In this paper, we are interested in composite models that can be expressed as linear com-
binations of basic models. In this framework, it is natural to measure the simplicity of a
composite model by the number of its basic model components. Since a composite model
in our framework corresponds to a linear weight over the basic model space, therefore our
measurement of model simplicity corresponds to the sparsity of the linear weight represen-
tation.

In this paper, we are interested in achieving sparsity through a greedy optimization algo-
rithm which we propose in the next section. This algorithm is closely related to a number of
previous works. The basic idea was originated in [5], where Jones observed that if a target
vector in a Hilbert space is a convex combination of a library of basic vectors, then using
greedy approximation, one can achieve an error rate of

���������
	
with

�
basic library vec-

tors. The idea has been refined in [1] to analyze the approximation property of sigmoidal
functions including neural networks.

The above methods can be regarded as greedy sparse algorithms for functional approxi-
mation, which is the noise-free case of regression problems. A similar greedy algorithm
can also be used to solve general regression problems under noisy conditions [6]. In ad-
dition to regression, greedy approximation can also be applied to classification problems.



The resulting algorithm is closely related to boosting [2] under the additive model point of
view [3]. This paper shows how to generalize the method in [5, 1] for analyzing greedy
algorithms (in their case, for functional approximation problems) and apply it to boosting.
Detailed analysis will be given in Section 4. Our method can also be used to obtain sparse
kernel representations for regression problems. Such a sparse representation is what sup-
port vector regression machines try to achieve. In this regard, the method given in this
paper complements some recently proposed greedy kernel methods for Gaussian processes
such as [9, 10].

The proposed greedy approximation method can also be applied to other prediction prob-
lems with different loss functions. For example, in density estimation, the goal is to find a
model that has the smallest negative log-likelihood. A greedy algorithm was analyzed in
[7]. Similar approximation bounds can be directly obtained under the general framework
proposed in this paper.

We proceed as follows. Section 2 formalizes the general class of problems considered in
this paper, and proposes a greedy algorithm to solve the formulation. The convergence rate
of the algorithm is investigated in Section 3. Section 4 includes a few examples that can be
obtained from our algorithm. Some final concluding remarks are given in Section 5.

2 General Algorithm

In machine learning, our goal is often to predict an unobserved output value � based on an
observed input vector � . This requires us to estimate a functional relationship ����� � � 	
from a set of example pairs of

� ����� 	 . Usually the quality of the predictor � � � 	 can be
measured by a loss function 	 � � � � 	 ��� 	 that is problem dependent.

In this paper, we are interested in the following scenario: given a family of basic predictors� ��
 ��� 	 parameterized by


, we want to obtain a good predictor � � � 	 that lies in the convex

hull of � ��
 ��� 	 with the fewest possible terms: � � � 	�
����������� � � ��
 � ��� 	 , where � � are non-
negative weights so that

���������� � 
 �
. This family of models can be regarded as additive

models in statistics [4]. Formally, each basic model � ��
 ��� 	 can be regarded as a vector
in a linear functional space. Our problem in its most general form can thus be described
as to find a vector � � � 	 in the convex hull of � ��
 ��� 	 to minimize a functional � of � that
measures the quality of � . This functional � of � plays the role of loss function for learning
problems.

More formally, we consider a linear vector space � , and a subset � �!� . Denote by "$# � � 	
the convex hull of � :

"$# � � 	%
'&)(*+����-, +/.0+21 , +2354 �
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+����6, +


 � � .7+ �8�9��:;�=<?>A@B�

where we use < > to denote the set of positive integers.

We consider the following optimization problem on "$# � � 	 :
C�DFEGIHKJML$N�OBP � ��Q 	$R (1)

In this paper, we assume that � is a differentiable convex function on "/# � � 	 .
We propose the following algorithm to approximately solved (1).

Algorithm 2.1 (Sparse greedy approximation)



given
Q�� �8"/# � � 	

for
� 
 � � � � R R/R

find �Q � �=� and 4�� , � � �
that minimize� � � ���

, �
	 Q �	� ��


, � �
Q � 	 �
��	

let
Q � 
 �����

, �
	MQ �	� � 


, � �
Q �

end

For simplicity, we assume that the minimization of
����	

in Algorithm 2.1 can be exactly
achieved at each step. This assumption is not essential, and can be easily removed using a
slightly more refined analysis. However due to the space limitation, we shall not consider
this generalization.

For convenience, we introduce the following quantity� � ��Q 	%
 � ��Q 	�� C�D7EG���HKJML/N�OBP � ��Q�� 	$R
In the next section, we show that under appropriate regularity conditions,

� � ��Q � 	�� 4 as��� 
��
, where

Q �
is computed from Algorithm 2.1. In addition, the convergence rate

can be bounded as
��� � � �
	

.

3 Approximation bound

Given any convex function � , we have the following proposition, which is a direct conse-
quence of the definition of convexity. In convex analysis, The gradient � � can be replaced
by the concept of subgradient, which we do not consider in this paper for simplicity.

Proposition 3.1 Consider a convex function � ��Q 	 , and two vectors
Q

and
Q �

, we have

� ��Q � 	�� � ��Q 	 3 ��Q � � Q 	�� � � ��Q 	 �
where � � is the gradient of � .

The following lemma is the main theoretical result of the paper, which bounds the perfor-
mance of each greedy solution step in Algorithm 2.1. We assume that � is second order
differentiable.

Lemma 3.1 Let � 
 � �"!
G	# G � HKJML$N�OBP Q�� ��$ � ��Q � 	 Q �

where we assume that the Hessian � $ � of � exists everywhere in "$# � � 	 . For all vectorsQ �!"$# � � 	 : if
� � ��Q 	 3&% � , we haveC�DFE' H)( � # �
* # G�� H O � � � � ���,+
	MQ 
 + Q � 	 � � � -

if
� � ��Q 	 �&% � , we have

C�DFE' H)( � # �
* # G � H O � � � ���.�,+
	MQ 
 + Q � 	 � � � ��Q 	�� � � ��Q 	 $/ � R

Proof. Using Taylor expansion and the definition of

�
, we have the following inequality

for all
Q �8"$# � � 	 , Q � �!� , and

+ ��0 4 � �21 ,
� � � ���,+
	MQ 
 +BQ�� 	�� � ��Q 	 � + ��Q��3� Q 	 � � � ��Q 	 
 + $� � % � 	$R



Now, consider two sequences , +2354 and
Q �+ �=� (� 
 � � R R/R ��: ), such that

� (+���� , +

 �

.
Multiply the above inequality (with

Q �
replaced by

Q �+ ) by , + , and sum over � , we obtain

(*
+���� , + �

� � ���,+
	 Q 
 + Q �+ 	�� � ��Q 	 � + � (*
+���� , +

Q �+ � Q 	 � �)� ��Q 	 
 � + $
� R

It is easy to see that this implies the inequality

C�DFE+ � � ����� +
	MQ 
 + Q �+ 	�� � ��Q 	 � + �A(*
+���� , +

Q �+ � Q 	 � � � ��Q 	 
 � + $
� R

Using Proposition 3.1, we obtain

C�DFE+ � � ����� +
	MQ 
 + Q��+ 	 � � ��Q 	 � + � � ��(*+���� , +
Q��+ 	 � � ��Q 	 	 
 � + $

� R

Since in the above, , + and
Q �+ are arbitrary, therefore

� (+���� , +
Q �+ can be used to express

any vector
Q �8"$# � � 	 . This implies
C�DFEG � H O � � � ���,+
	MQ 
 + Q � 	 � � ��Q 	 
 + � C�DFE�G � � �Q 	�� � ��Q 	 	 
 � + $

� R
Now by setting

+ 
�� C�D ��� � � � ��Q 	 � C�DFE �G � � �Q 	 	 � � %
�
	 	

in the above inequality, we obtain
the lemma. �
Using the above lemma and note that

� � ��Q � 	 � � �
, it is easy to obtain the following

theorem by induction. For space limitation, we skip the proof.

Theorem 3.1 Under the assumptions of Lemma 3.1, Algorithm 2.1 approximately solves
(1), and the rate of convergence for

� 3 �
is given by

� � ��Q � 	 � / �
� 
�� R

If
� � ��Q���	 �&% � , then we also have

� � ��Q � 	 � / �
� 
 �	�
�� N�G�
�P

R

4 Examples

In this section, we discuss the application of Algorithm 2.1 in some learning problems.
We show that the general formulation considered in this paper includes some previous
formulations as special cases. We will also compare our results with similar results in the
literature.

4.1 Regression

In regression, we would like to approximate � as � � � 	 so that the expected loss of

� � � ��� 	 	�
���� # � � � � � � � 	 	 $
is small, where we use the squared loss for simplicity (this choice is obviously not crucial
in our framework).

� � # � is the expectation over � and � , which often corresponds to the
empirical distribution of

� ����� 	 pairs. It may also represent the true distribution for some



other engineering applications. Given a set of basis functions � ��
 ��� 	 with

 ��� , we may

consider the following regression formulation that is slightly different from (1):

C�DFE� � � # � � � � �*
����� � � �

��
 � ��� 	 	 $ (2)

s.t.

�*
��� �

� � � � ��� �
where � is a positive regularization parameter which is used to control the size of the
weight vector � . The above formulation can be readily converted into (1) by considering
the following set � of basic vectors:

� 
 &�� � ��
 ��� 	 1 � � � ��� � 
 �	� @ R
We may start with � � 
 4 (

Q � 
 4 ) in Algorithm 2.1. Since the quantity

�
in Lemma 3.1

can be bounded as � 
 � �"!
 � � $ ��� � ��
 ��� 	 $ R
This implies that the sparse solution

Q �
in Algorithm 2.1, represented as weight � � � � ���

and

 � ( � 
 � � R/R R � � ), satisfies the following inequality:

� � # � � � � �*
����� �

�� � ��
 � ��� 	 	 $ � C�DFE
 � 
������ # 
 �� � � # � � � � (*
+���� � + �

��
 �+ ��� 	 	 $ 
 ��� � $ � �3! 
 � � � ��
 ��� 	 $
� 
��

for all
� 3 �

. This leads to the original functional approximation results in [1, 5] and its
generalization in [6].

The sparse regression algorithm studied in this section can also be applied to kernel meth-
ods. In this case, � corresponds to the input training data space

& � � � R/R R �����6@ , and the basis
predictors are of the form � ��
 ��� 	�
 � � � � ��� 	 . Clearly, this corresponds to a special case of
(2). A sparse kernel representation can be obtained easily from Algorithm 2.1 which leads
to provably good approximation rate. Our sparse kernel regression formulation is related
to Gaussian processes, where greedy style algorithms have also been proposed [9, 10]. The
bound given here is comparable to the bound given in [10] where a sparse approximation
rate of the form

��� � ��� 	
was obtained.

4.2 Binary classification and Boosting

In binary classification, the output value � � &�� � @ is a discrete variable. Given a continu-
ous model � � � 	 , we consider the following prediction rule:

� 
�� � if � � � 	 354 �� �
if � � � 	�� 4 R

The classification error (we shall ignore the point � � � 	 
 4 , which is assumed to occur
rarely) can be given by

	 � � � � 	 ��� 	�
 � � if � � � 	 � �54 �4 if � � � 	 ��� 4 R
Unfortunately, this classification error function is not convex, which cannot be handled in
our formulation. In fact, even in many other popular methods, such as logistic regression
and support vector machines, some kind of convex formulations have to be employed.



Although it is possible for us to analyze their formulations, in this section, we only consider
the following form of loss that is closely related to Adaboost [2]:

� � � ��� 	 	�
�� D � � � # ����� ! ��� � � � � 	 � 	 	 � (3)

where � is a scaling factor.

Again, we consider a set of basis predictors � ��
 ��� 	 � 0 � � � �21 , which are often called weak
learners in the boosting literature. We would like to find a strong learner � � � 	 as a convex
combination of weak learners to approximately minimize the above loss:

C�D7E� � D � � � # � ��� ! ��� � �*
��� � � � �

��
 � ��� 	 � 	 	 (4)

s.t.

�*
����� � � �

� � � � 354 R (5)

This can be written as formulation (1) with

� 
�& � � ��
 ��� 	 1 4 � � � � @ R
Using simple algebra, it is easy to verify that� � � �"!

� # � � HKJML$N�OBP
� $ � � # � � ��� ! ��� � � � � � 	 � 	 � � � 	 $ 	� � # ����� ! � � � � � � � 	 � 	 � � $ R

We start with � � 
 4 in Algorithm 2.1. Theorem 3.1 implies that the sparse solution
Q �

,
represented as weight � � and


 � ( � 
 � � R R/R � � ), satisfies the following inequality:

� � # � ��� ! � � � �*
����� �

�� � ��
 � ��� 	 � 	 � C�DFE
 � 
 � � � # 
 �� � � # � ��� ! ��� � (*+���� � + � ��
 �+ ��� 	 � 
 / � $
� 
�� 	

(6)

for all
� 3 �

. Weight � in the above inequality is non-negative. Now we consider the
special situation that there exists �	� 4 such that

C�DFE
 � 
 � � � # 
 �� � � # � ��� ! ��� � (*+���� � + � ��
 �+ ��� 	 � 	 � ��� ! ��� �
� � 	$R (7)

This condition will be satisfied in the large margin linearly separable case where there exists� + 354 � 
 �+ and � � 4 such that � � � � � �
and for all data

� � ��� 	 ,
(*
+���� � + �

��
 �+ ��� 	 � 3 �
�
R

Now, under (7), we obtain from (6) that

	 �
�*
����� �

�� � ��
 � ��� 	 � � �
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 / � $

� 
 � 	$R
Fix any

� 3 �
, we can choose � 
 � � � 
�� 	 � ���

to obtain

	 �
�*
��� � �

�� � ��
 � ��� 	 � � �
	 � ��� ! ��� � $ � � 
�� 	 � � � 	 R

(8)

This implies that the misclassification error rate decays exponentially. The exponential de-
cay of misclassification error is the original motivation of Adaboost [2]. Boosting was later



viewed as greedy approximation in the additive model framework [3]. From the learning
theory perspective, the good generalization ability of boosting is related to its tendency to
improve the misclassification error under a positive margin [8]. From this point of view,
inequality (8) gives a much more explicit margin error bound (which decreases exponen-
tially) than a related result in [8].

In the framework of additive models, Adaboost corresponds to the exponential loss (3)
analyzed in this section. As pointed out in [3], other loss functions can also be used.
Using our analysis, we may also obtain sparse approximation bounds for these different
loss functions. However, it is also easy to observe that they will not lead to the exponential
decay of classification error in the separable case. Although the exponential loss in (3) is
attractive for separable problems due to the exponential decay of margin error, it is very
sensitive to outliers in the non-separable case.

We shall mention that an interesting aspect of boosting is the concept of adaptive resam-
pling or sample reweighting. Although this idea has dominated the interpretation of boost-
ing algorithms, it has been argued in [3] that adaptive resampling is only a computational
by-product. The idea corresponds to a Newton step approximation in the sparse greedy
solution of

�
��	
in Algorithm 2.1 under the additive model framework which we consider

here. Our analysis further confirmed that the greedy sparse solution of an additive model
in (1), rather than reweighting itself is the key component in boosting. In our framework,
it is also much easier to related the idea of boosting to the greedy function approximation
method outlined in [1, 5].

4.3 Mixture density estimation

In mixture density estimation, the output � is the probability density function of the input
vector at � . The following negative log-likelihood is commonly used as loss function:

� � � ��� 	 	�
 � � � � D � � � 	 �
where � � � 	 3 4 is a probability density function.

Again, we consider a set of basis predictors � ��
 ��� 	 , which are often called mixture com-
ponents. We would like to find a mixture probability density model � � � 	 as a convex com-
bination of mixture components to approximately minimize the negative log-likelihood:

C�DFE� � � � � D � �*
����� � � �

��
 � ��� 	 � 	 	 (9)

s.t.

�*
����� � �


 � � � �%3 4 R (10)

This problem was studied in [7]. The quantity

�
defined in Lemma 3.1 can be computed

as: � 
 � �"!
� � N�� P # ��� N�� P HKJML/N�OBP � ��� �

� � 	 $
� $ � � 	 $


 � �"!
 � # 
 � ��� �
��
 � ��� 	 $
� ��
 $ ��� 	 $

R

An approximation bound can now be directly obtained from Theorem 3.1. It has a form
similar to the bound given in [7].

5 Conclusion

This paper studies a formalization of a general class of prediction problems in machine
learning, where the goal is to approximate the best model as a convex combination of



a family of basic models. The quality of the approximation can be measured by a loss
function which we want to minimize.

We proposed a greedy algorithm to solve the problem, and we have shown that for a variety
of loss functions, a convergence rate of

��� � � �
	
can be achieved using a convex combina-

tion of
�

basic models. We have illustrated the consequence of this general algorithm in
regression, classification and density estimation, and related the resulting algorithms to
previous methods.
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