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Abstract 

Cortical neurons might be considered as threshold elements inte­
grating in parallel many excitatory and inhibitory inputs. Due to 
the apparent variability of cortical spike trains this yields a strongly 
fluctuating membrane potential, such that threshold crossings are 
highly irregular. Here we study how a neuron could maximize its 
sensitivity w.r.t. a relatively small subset of excitatory input. Weak 
signals embedded in fluctuations is the natural realm of stochastic 
resonance. The neuron's response is described in a hazard-function 
approximation applied to an Ornstein-Uhlenbeck process. We an­
alytically derive an optimality criterium and give a learning rule 
for the adjustment of the membrane fluctuations, such that the 
sensitivity is maximal exploiting stochastic resonance. We show 
that adaptation depends only on quantities that could easily be 
estimated locally (in space and time) by the neuron. The main 
results are compared with simulations of a biophysically more re­
alistic neuron model. 

1 Introduction 

Energetical considerations [1] and measurements [2] suggest , that sub-threshold 
inputs, i.e. inputs which on their own are not capable of driving a neuron , play an 
important role in information processing. This implies that measures must be taken, 
such that the relevant information which is contained in the inputs is amplified in 
order to be transmitted. One way to increase the sensitivity of a threshold device is 
the addition of noise. This phenomenon is called stochastic resonance (see [3] for a 
review) , and has already been investigated and experimentally demonstrated in the 
context of neural systems (e.g. [3 , 4]). The optimal noise level, however , depends 
on the distribution of the input signals, hence neurons must adapt their internal 
noise levels when the statistics of the input is changing. Here we derive and explore 
an activity dependent learning rule which is intuitive and which only depends on 
quantities (input and output rates) which a neuron could - in principle - estimate. 

The paper is structured as follows. In section 2 we describe the neuron model and we 
introduce the membrane potential dynamics in its hazard function approximation. 



In section 3 we characterize stochastic resonance in this model system and we calcu­
late the optimal noise level as a function of t he input and output rates. In section 4 
we introduce an activity dependent learning rule for optimally adjusting the inter­
nal noise level , demonstrate its usefulness by applying it to t he Ornstein-Uhlenbeck 
neuron and relate the phenomenon of stochastic resonance to its experimentally 
accessible signature: the adaptation of the neuron 's transfer function . Section 5 
contains a comparison to the results from a biophysically more realistic neuron 
model. Section 6, finally, concludes with a brief discussion. 

2 The abstract Neuron Model 

Figure 1 a) shows the basic model setup. A leaky integrate-and-fire neuron receives 
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Figure 1: a)The basic model setup. For explanation see text . b) A family of 
Arrhenius type hazard functions for different noise levels. 1 corresponds to the 
threshold e and values below 1 are subthreshold . 

a "signal" input , which we assume to be a Poisson distributed spike train with a rate 
As. The rate As is low enough , so that the membrane potential V of the neuron 
remains sub-threshold and no output spikes are generated . For the following we 
assume that the information the input and output of the neuron convey is coded by 
its input and output rates As and Ao only. Sensitivity is then increased by adding 
2N balanced excitatory and inhibitory "noise" inputs (N inputs each) with rates 
An and Poisson distributed spikes . Balanced inputs [5, 6] were chosen , because they 
do not affect t he average membrane potential and allow to separate the effect of 
decreasing the distance of the neuron's operating point to the threshold potential 
from the effect of increasing the variance of the noise. Signal and noise inputs 
are coupled to t he neuron via synaptic weights Ws and Wn for the signal and noise 
inputs . The threshold of the neuron is denoted bye. Without loss of generality the 
membrane time-constant, the neuron 's resting potential, and the neuron 's threshold 
are set to one, zero , and one , respectively. 

If the total rate 2N An of incoming spikes on t he "noise" channel is large and the 
individual coupling constants Wn are small , the dynamics of the m embrane potential 
can be approximated by an Ornstein-Uhlenbeck process, 

dV = - V dt + J.l dt + (J" dW, (1) 

where drift J.l and variance (J" are given by J.l = wsAs and (J"2 = w1As + 2NwYvAN, 
and where dW describes a Gaussian noise process with m ean zero and variance 
one [8]. Spike initiation is included by inserting an absorbing boundary with reset. 
Equation (1) can be solved analytically for special cases [8], but here we opt for 



a more versatile approximation (cf. [7]). In this approximation, the probability of 
crossing the threshold , which is proportional to the instantaneous output rate of 
the neuron , is described by an effective transfer function. In [7] several transfer 
functions were compared in their performance, from which we choose an Arrhenius­
type function , 

Ao(t) = c exp{ _ (e - ~(t))2}, 
cr 

(2) 

where e - x(t) is the distance in voltage between the noise free trajectory of the 
membrane potential x(t) and the threshold e, x(t) is calculated from eq. (1) without 
its diffusion term. Note that x(t) is a function of As, c is a constant. Figure 1 b) 
shows a family of Arrhenius type transfer functions for different noise levels cr. 

3 Stochastic Resonance in an Ornstein-Uhlenbeck Neuron 

Several measures can be used to quantify the impact of noise on the quality of signal 
transmission through threshold devices . A natural choice is the mutual information 
[9] between the distributions p( As) and p( Ao) of input and output rates, which we 
will discuss in section 4, see also figure 3f. In order to keep the analysis and the 
derivation of the learning rule simple , however, we first consider a scenario, in which 
a neuron should distinguish between two sub-threshold input rates As and As + ~s. 
Optimal distinguishability is achieved if the difference ~o of the corresponding 
output rates is maximal, i.e. if 

~o = /(As + ~s) - /(As) = max , (3) 

where / is the transfer function given by eq. (2). Obviously there is a close con­
nection between these two measures , because increasing both of them leads to an 
increase in the entropy of p( Ao) . 

Fig. 2 shows plots of the difference ~o of output rates vs. the level of noise, cr , for 
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Figure 2: ~o vs. cr 2 for two different base rates As = 2 (left) and 7 (right) and 10 
different values of ~s = 0.01 , 0.02 , ... , 0.1. cr 2 is given in per cent of the maximum 
cr 2 = 2N W;An. The arrows above t he x-axis indicate the position of the maximum 
according to eq. (3), the arrowheads below the x-axis indicate the optimal value 
computed using eq. (5) (67% and 25%). Parameters were: N = la , An = 7, 
Ws = 0.1 , and Wn E [0, 0.1]. 

different rates As and different values of ~s . All curves show a clear maximum at a 



particular noise level. The optimal noise level increases wit h decreasing t he input 
rate As, but is roughly independent of the difference ~s as long as ~s is small. 
Therefore, one optimal noise level holds even if a neuron has to distinguish several 
sub-threshold input rates - as long as these rates are clustered around a given base 
rate As. 

The optimal noise level for constant As (stationary states) is given by the condition 

d 
d(j2 (f(A s + ~s) - f(As)) = 0 , (4) 

where f is given by eq. (2). Equation (4) can be evaluated in the limit of small 
values of ~s using a Taylor expansion up to the second order. We obtain 

(j;pt = 2(1 - ws As)2 (5) 

if the main part of the variance of the membrane potential is a result of the balanced 
. "f 2 '" 2N 2 , (f (1)) S' 2 - (1 - W, A, )2 (2) (5) mput , l. e. 1 (j '" WNAN c . eq. . mce (jopt - - log(Ao/C) , eq. , eq. 

is equivalent to 1 + 2 log( Ao (A; ;0"2)) = O. This shows that the optimal noise level 
depends either only on As or on Ao (As; (j2), both are quantities which are locally 
available at the cell. 

4 Adaptive Stochastic Resonance 

We now consider the case , that a neuron needs to adapt its internal noise level 
because the base input rate As changes. A simple learning rule which converges to 
the optimal noise level is given by 

(j2 
~(j2 = - f log( - 2-) , (6) 

(j opt 

where the learning parameter f determines the time-scale of adaptation . Inserting 
the corresponding expressions for the actual and the optimal variance we obtain a 
learning rule for the weights W n , 

I ( 2NAnw; ) 
~wn = -f og ( )2 . 

2 1 - ws As 
(7) 

Note, t hat equivalent learning rules (in the sense of eq. (6)) can be formulated for 
the number N of the noise inputs and for their rates An as well. The r.h. s. of eqs . 
(6) and (7) depend only on quantities which are locally available at the neuron. 

Fig. 3ab shows the stochastic adaptation of the noise level , using eq. (7) , to 
randomly distributed As which are clustered around a base rate. 

Fig. 3c-f shows an application ofthe learning rule, eq. (7) to an Ornstein-Uhlenbeck 
neuron whose noise level needs to adapt to three different base input rates. T he 
figure shows t he base input rate As (Fig. 3a). In fig. 3b the adaptation of Wn 

according to eq. (7) is shown (solid line), for comparison t he Wn which maximizes 
eq. (3) is also displayed (dashed dotted line). Mutual information was calculated 
between a distribution of randomly chosen input rates which are clustered around 
the base rate As. The Wn that maximizes mutual Information between input and 
output rates is displayed in fig. 3d (dashed line). Fig. 3e shows the ratio ~o/ ~s 
computed by using eq. (3) and the Wn calculated with eq. (8) (dashed dotted line) 
and the same ratio for the quadratic approximation. Fig. 3f shows the mutual 
information between the input and output rates as a function of the changing wn . 
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Figure 3: a) Input rates As are evenly distributed around a base rate with width 
0.5, in each time step one As is presented . b) Application of the learning rule eq. 
(7) to t he rates shown in a). Adaptation of the noise level to t hree different input 
base rates As. c) The three base rates As. d) Wn as a function of time according 
to eq. (7) (solid line) , the optimal Wn that maximizes eq. (3) (dashed dotted line) 
and the optimal Wn that maximizes the mut ual information between t he input and 
output rates (dashed). T he opt imal values of Wn as the quadratic approximation, 
eq. (5) yield are indicated by the black arrows. e ) The ratio b.. o / b.. s computed 
from eq. (3) (dashed dotted line) and t he quadratic approximation (solid line) . f) 
Mut ual information between input and output rates as a function of base rate and 
changing synaptic coupling constant W n . For calculating the mutual information 
the input rates were chosen randomly from the interval [As - 0.25 , As + 0.25] in each 
time step . Parameters as in fig . 2. 

T he figure shows , that the learning rule, eq. (7) in t he quadratic approximation 
leads to values for () which are near-optimal, and that optimizing the difference of 
output rates leads to results similar to t he optimization of the mut ual information . 

5 Conductance based Model Neuron 

To check if and how t he results from the abstract model carryover to a biophysically 
mode realistic one we explore a modified Hodgkin-Huxley point neuron with an 
additional A-Current (a slow potassium current) as in [11] . T he dynamics of the 
membrane potential V is described by t he following equation 

C~~ - gL(V(t ) - EL) - !iNam~ h(t)(V - ENa) 

- !iKn(t)4(V - EK) - !iAa~ b(t)(V - EK) 
+ l syn + lapp, (8) 

the parameters can be found in the appendix. All parameters are kept fixed through-
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Figure 4: a) Transfer function for the conductance based model neuron with ad­
ditional balanced input , a = 1, 2, 3, 4 b ) Demonstration of SR for the conductance 
based model neuron. The plot shows the resonance for two different base currents 
lapp = 0.7 and lapp = 0.2 and a E [0, 10]. 
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Figure 5: a) Optimal noise-level as a function ofthe base current in the conductance 
based model. b) Optimal noise-level as a function of the noise-free membrane 
potential in the abstract model. 

out all shown data. As balanced input we choose an excitatory Poisson spike train 
with rate Ane = 1750 Hz and an inhibitory spike train with rate Ani = 750 Hz . 
These spike trains are coupled to the neuron via synapses resulting in a synaptic 
current as in [12] 

ls yn = ge(V(t) - Ee) + gi(V(t) - Ei)). (9) 

Every time a spike arrives at the synapse the conductance is increased by its peak 
conductance ge i and decreases afterwards exponentially like exp{ - _t_, } . The cor-

I T e, t 

responding parameters are ge = a * 0.02 * gL , gi = a * 0.0615 * gL. The common 
factor a is varied in the simulations and adjusts the height of the peak conductances, 
gL is the leak conductance given above. Excitatory and inhibitory input are called 
balanced if the impact of a spike-train at threshold is the same for excitation and 
inhibition 

TegeAne(Ee - B) = - TigiAni(Ei - B) (10) 

with Te i = ~ fooo ge i(t)dt . Note that the factor a does cancel in eq . (10). 
I ge,t J! , 

Fig. 4a displays transfer funct ions in the conductance based setting with balanced 
input. A family of functions with varying peak conduct ances for the balanced input 
is drawn . 
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Figure 6: Adaptive SR in the conductance based model. a) Currents drawn from 
a uniform distribution of width 0.2 nA centered around base currents of 3, 8, 1 nA 
respectively. b) Optimal noise-level in terms of a. Optimality refers to a semi-linear 
fit to the data of fig. 5a. c) adapting the peak conductances using a in a learning 
rule like eg. (8). d) Difference in spike count , for base currents I ± 0.1 nA and 
using a as specified in c) . 

For studying SR in t he conductance based framework , we apply the same paradigm 
as in the abstract model. Given a certain average membrane potential, which is 
adjusted via injecting a current I (in nA), we calculate the difference in the output 
rate given a certain difference in the average membrane potential (mediated via the 
injected current) I ± t:.I. A demonstration of stochastic resonance in the conduc­
tance based neuron can be seen in fig. 4b. In fig. 5a the optimal noise-level, in 
terms of multiples a of the peak conductances , is plotted versus all currents that 
yield a sub-threshold membrane voltage. For comparison we give the corresponding 
relationship for the abstract model in fig. 5b . 

Fig. 6 shows the performance of the conductance based model using a learning 
rule like eg. (7). Since we do not have an analytically derived expression for (J opt 

in the conductance based case, the relation (Jopt (I) , necessary for using eg. (7), 
corresponds to a semi-linear fit to the (a opt , I) relation in fig. 5a. 

6 Conclusion and future directions 

In our contribution we have shown , that a simple and activity driven learning rule 
can be given for the adaptation of the optimal noise level in a stochastic resonance 
setting. The results from the abstract framework are compared with results from a 
conductance based model neuron. A biological plausible mechanism for implement­
ing adaptive stochastic resonance in conductance based neurons is currently under 
investigation. 
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Appendix: Parame t ers for the conductance based mode l n euron 

somatic conductances/ion-channel properties: em = 1.0 :':2 ,gL = 0.05 ~ ,gNa = 
100 ~,gJ( = 40 ~,gA = 20 ~,EL = -65 mV,ENa = 55 mV, EJ( 
- 80 mV, TA = 20 ms , 
synaptic coupling: Ee = 0 mV, Ei = -80 mV, Te = 5 ms , Ti = 10 ms , 
spike initiation: dh = ~ dn = ngo - n <jQ = ~ 

dt Th ' dt Tn' dt T A ' 

mCO = <>m<>-ti3m' O:m = -O.l(V + 30)/(exp( -O .l(V + 30)) - 1), f3m = 4exp( -(V + 
55)/18), 
hoo = <> h":i3h' O:h = 0.07exp(-(V + 44)/20), f3h = l/(exp(-O. l(V + 14)) + 1) , 
n co = <>n+i3 n ' O:n = -O.Ol(V + 34)/(exp( -O.l(V + 34)) -1) , f3n = 0.125exp( -(V + 
44)/80) 
a oo = l/(exp( -(V + 50)/20) + 1) , boo = l/(exp((V + 80)/6) + 1), 
Th = in/(O:h + f3h) , Tn = in/(O:n + f3n), in = 0.1 
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