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Abstract

Population codes often rely on the tuning of the mean responses to the
stimulus parameters. However, this information can be greatly sup-
pressed by long range correlations. Here we study the efficiency of cod-
ing information in the second order statistics of the population responses.
We show that the Fisher Information of this system grows linearly with
the size of the system. We propose a bilinear readout model for extract-
ing information from correlation codes, and evaluate its performance in
discrimination and estimation tasks. It is shown that the main source of
information in this system is the stimulus dependence of the variances of
the single neuron responses.

1 Introduction

Experiments in the last years have shown that in many cortical areas, the fluctuations in
the responses of neurons to external stimuli are significantly correlated [1, 2, 3, 4], rais-
ing important questions regarding the computational implications of neuronal correlations.
Recent theoretical studies have addressed the issue of how neuronal correlations affect the
efficiency of population coding [4, 5, 6]. It is often assumed that the information about
stimuli is coded mainly in the mean neuronal responses, e.g., in the tuning of the mean
firing rates, and that by averaging the tuned responses across large populations, an accu-
rate estimate can be obtained despite the significant noise in the single neuron responses.
Indeed, for uncorrelated neurons the Fisher Information of the population is extensive [7];
namely, it increases linearly with the number of neurons in the population. Furthermore, it
has been shown that this extensive information can be extracted by relatively simple linear
readout mechanisms [7, 8]. However, it was recently shown [6] that positive correlations
which vary smoothly with space may drastically suppress the information in the mean re-
sponses. In particular, the Fisher Information of the system saturates to a finite value as
the system size grows. This raises questions about the computational utility of neuronal
population codes.

Neuronal population responses can represent information in the higher order statistics of
the responses [3], not only in their means. In this work, we study the accuracy of cod-
ing information in the second order statistics. We call such schemes correlation codes.
Specifically, we assume that the neuronal responses obey multivariate Gaussian statistics
governed by a stimulus-dependent correlation matrix. We ask whether the Fisher Informa-
tion of such a system is extensive even in the presence of strong correlations in the neuronal



noise. Secondly, we inquire how information in the second order statistics can be efficiently
extracted.

2 Fisher Information of a Correlation Code

Our model consists of a system of � neurons that code a 2D angle � , ���������
	 . Their
stochastic response is given by a vector of activities
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where
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is the activity of the


-th neuron in the presence of a stimulus � , and is distributed according to a multivariate
Gaussian distribution������� ����� � "!$#&% ')( �� ��� (+* � ���,�.-0/ � ���21 � ��� (3* � ���0��4 (1)

Here
� 
 � ��� is the mean activity of the



-th neuron and its dependence on � is usually referred

to as the tuning curve of the neuron; / � ��� is the correlation matrix; and
 

is a normalization
constant. Here we shall limit ourselves to the case of multiplicative modulation of the
correlations. Specifically we use5 
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where
�

and E are the correlation strength and correlation length respectively; L defines the
tuning width of the correlations; and

> 

denotes the angle at which the variance of the



-th

neuron, 9 M
 � ��� , is maximal. An example is shown in Fig. 1. It is important to note that the
variance adds a contribution to

5 
76
which is larger than the contribution of the smooth part

of the correlations. For reasons that will become clear below, we write,5 
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where
5 O
=6

denotes the smooth part of the correlation matrix and
5 Q


the discontinuous
diagonal part, which in the example of Eqs. (2)-(4) is5PQ
 � ���G� � � ( � �,9 M
 � ��� � (6)

A useful measure of the accuracy of a population code is the Fisher Information (FI). In
the case of uncorrelated populations it is well known that FI increases linearly with sys-
tem size [7], indicating that the accuracy of the population coding improves as the system
size is increased. Furthermore, it has been shown that relatively simple, linear schemes
can provide reasonable readout models for extracting the information in uncorrelated pop-
ulations [8]. In the case of a correlated multivariate Gaussian distribution, FI is given asR � R�SUT.V2W A R:XZY0[0[

, whereR�SUT.V2W � * � ���.\ - / � �:� 1 � * � ���,\ (7)R:XZY0[0[ � ��N] ��^ / � ��� 1 � � / � ���0�.\�_ M (8)

where

* \ and / \ denote derivatives of

*
and / with respect to � , respectively. The form

of these terms reveals that in general the correlations play two roles. First they control the
efficiency of the information encoded in the mean activities

* � �:� (note the dependence ofR SUT.V2W
on
5

). Secondly, / � ��� provides an additional source of information about the stim-
ulus (

R&XZY0[0[
). When the correlations are independent of the stimulus,


�� `�� 9 
 � ���a� � ��bdc�e
, it

was shown [6] that positive correlations,
�gf � , with long correlation length, E �ih � � � ,
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Figure 1: The stimulus-dependent correlation matrix, Eqs. (2)-(4), depicted as a function
of two angles,
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cause the saturation of FI to a finite limit at large � . This implies that in the presence
of such correlations, population averaging cannot overcome the noise even in large net-
works. This analysis however, [6], did not take into account stimulus-dependent correla-
tions, which is the topic of the present work.

Analyzing the � dependence of
RNXZY,[ [

, Eq. (8), we find it useful to writeR XZY0[0[ � R Q A R O 	 (9)

where R Q � �� �� 
 ��� C � 5 Q
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 � ��� F M (10)

is FI of an uncorrelated population with stimulus-dependent variance which equals
5 Q


,
and scales linearly with � ;

R O � R:XZY0[0[ ( R Q . Evaluating these terms for the multiplicative
model, Eq. (2), we find that

R O is positive, so that
R�� R Q . Furthermore, numerical evalua-

tion of this term shows that
R O saturates at large � to a small finite value, so that for large� R:XZY0[ [	� R Q � �
��
 M��
 � >�
	 C 9 \ �?> �9 �?> � F M (11)

as shown in Fig. 2. We thus conclude that
R XZY0[0[

increases linearly with � and is equal, for
large � , to the FI of variance coding namely to

R
of an independent population in which

information is encoded in their activity variances.

Since in our system the information is encoded in the second order statistics of the popula-
tion responses, it is obvious that linear readouts are inadequate. This raises the question of
whether there are relatively simple nonlinear readout models for such systems. In the next
sections we will study bilinear readouts and show that they are useful models for extracting
information from correlation codes.

3 A Bilinear Readout for Discrimination Tasks

In a two-interval discrimination task the system is given two sets of neuronal activities��� ��� 	 ��� M � generated by two proximal stimuli � and � A @�� and must infer which stimu-
lus generated which activity. The Maximum-Likelihood (ML) discrimination yields the
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Figure 2: (a) Fisher Information,
R XZY0[0[

, of the stimulus-dependent correlations, Eqs. (2)-
(4), as a function of the number of neurons in the system. In (b) we show the difference
between the full FI and the contribution of the diagonal term,

R O - as defined by Eq. (9).
Here

� ��� � � , E � �
and L � 	���� . Note the different scales in (a) and (b).

probability of error given by � � � \ � � ��� , where � ��� � � � �
	d� 1 ��� M	��
� � � ` 1 ��
 � M and the
discriminability � \ equals

� \ � � @�� ��� R�� ��� � (12)

It has been previously shown that in the case of uncorrelated populations with mean coding,
the optimal linear readouts achieves the Maximum-Likelihood discrimination performance
in large N [7].

In order to isolate the properties of correlation coding we will assume that no information
is coded in the average firing rates of the neurons, and take

* ��� hereafter. We suggest a
bilinear readout as a simple generalization of the linear readout to correlation codes. In a
discrimination task the bilinear readout makes a decision according to the sign of
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where a
A � ( � decision refers to � � � A @���� . Maximizing the signal-to-noise ratio of this

rule, the optimal bilinear discriminator (OBD) matrix is given by

� 
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Using the optimal weights to evaluate the discrimination error we obtain that in large � the
performance of the OBD saturates the ML performance, Eq. (12). Thus, since FI of this
model increases linearly with the size of the system, the discriminability increases as

� � .

Since the correlation matrix / depends on the stimulus, � , the OBD matrix, Eq. (14), will
also be stimulus dependent. Thus, although the OBD is locally efficient, it cannot be used
as such as a global efficient readout.

4 A Bilinear Readout for Angle Estimation

4.1 Optimal bilinear readout for estimation

To study the global performance of bilinear readouts we investigate bilinear readouts which
minimize the square error of estimating the angle averaged over the whole range of � . For
convenience we use complex notation for the encoded angle, and write �� as the estimator
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where � 
76 are stimulus independent complex weights. We define the optimal bilinear esti-
mator (OBE) as the set of weights

�
that minimizes on average the quadratic estimation

error of an unbiased estimator. This error is given by� ��� �G� �� 
 � ��
	 � � @ �� � M�� ( 
 � �� 		� � ����
 ��
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where � � ��� is the Lagrange multiplier of the constraint 
 �� � ��� ��� ��� � � � ��� . In general,
it is impossible to find a perfectly unbiased estimator for a continuously varied stimulus,
using a finite number of weights. However, in the case of angle estimation, we can employ
the underlying rotational symmetry to generate such an estimator. For this we use the
symmetry of the correlation matrix, Eq. (2). In this case one can show that the Lagrange
multipliers have the simple form of � � ���)� � ` 
�� , and the OBE weight matrix is in the form
of

� 
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where � �?> �G��� � ( > � and � �?> �)� ( � �?> A � 	d� . This form of a readout matrix, Eq. (17),
guarantees that the estimator will be unbiased. Using these symmetry properties, � �K> � can
be written in the following form (for even � )

� �?> ��� @���� 
 A � � M 1 ��W ��� � � W � HBI�J ^ � b ( �� � > _ 	 ( 	�� > �"	 (18)

Figure 3 (a) presents an example of the function � �K> � . These numerical results (Fig. 3 (a))
also suggest that the function � �K> � is mainly determined by a few harmonics plus a delta
peak at

> � � . Below we will use this fact to study simpler forms of bilinear readout.

Further analysis of the OBE performance in the large � limit yields the following asymp-
totic result 
 � @ ��:� M � 1 � ��� ��� � Q �M�� 5 Q
 �?> � ` 
 � ��� M� Q �M � � 5 Q
 �?> �0� M � � ( � �
c � � > �,� (19)

Figure 3 (b) shows the numerical calculation of the OBE error (open circles) as a function
of � . The dashed line is the asymptotic behavior, given by Eq. (19). The dotted line is
the Creamer-Rao bound. From the graph one can see that the estimation efficiency of this
readout grows linearly with the size of the system, � , but is lower than the bound.

4.2 Truncated bilinear readout

Motivated by the simple structure of the optimal readout matrix observed in Fig. 3 (a), we
studied a bilinear readout of the form of Eqs. (17) and (18) with � �K> � which has a delta
function peak at the origin plus a few harmonics. Restricting the number of harmonics to
relatively small integers, we evaluated numerically the optimal values of the coefficients� � W � for large systems. Surprisingly we found that for small � and large � , these coef-
ficients approach a value which is independent of the specifics of the model and equals� � W � � ( � �B� , yielding a bilinear weight matrix of the form

� 
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Figure 4 shows the numerical results for the squared average error of this readout for sev-
eral values of � �! and �8� �
��� � . The results of Fig. 4 show that for a given � the
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Figure 3: (a) Profile of � �?> � , Eq. (17), for the OBE with � � � � . (b) Numerical evaluation
of one over the squared estimation error, for the optimal bilinear readout in the multiplica-
tive modulation model (open circles). The dashed line is the asymptotic behavior, given by
Eq. (19). Here � � � � 
 � @ ��&� M � � � � M , for the optimal bilinear readout in the multiplicative
modulation model. The dotted line is the FI bound. In these simulations

� � � � � , E � �
and L � 	�� � were used.

inverse square error initially increases linearly with � but saturates in the limit of large� . However, the saturation size � O V - � � � increases rapidly with � . The precise form of� O V - � � � depends on the specifics of the correlation model. For the exponentially decaying
correlations assumed in Eq. (2), we find � O V - ����� . Figure 4 shows that for this range of� , and � �  the deviations of the inverse square error from linearity are small. Thus, in
the regime

� � � � � � � O V - � � � , 
 � @ ��:� M � is given by the asymptotic behavior, Eq. (19),
shown by the dashed line.

We thus conclude that the OBE (with unlimited � ) will generate an inverse square estima-
tion error which increases linearly with � with a coefficient given by Eq. (19), and that
this value can be achieved for reasonable values of � by an approximate bilinear weight
matrix, of the form of Eq. (20), with small � . The asymptotic result, Eq. (19), is smaller
than the optimal value given by the full FI, Eq. (11), see Fig. 4 (dotted line). In fact, it is
equal to the error of an independent population with a variance which equals

5 Q
 � ��� and a
quadratic population vector readout of the form

�� � �� 
 ��� � M
 ` 
 ��� (21)

It is important to note that in the presence of correlations, the quadratic readout of Eq.
(21) is very inefficient, yielding a finite error for large � as shown in Fig. 4 (line marked
‘quadratic’).

5 Discussion

To understand the reason for the simple form of the approximately optimal bilinear weight
matrix, Eq. (20), we rewrite Eq. (15) with

�
of Eq. (20) as

�� � �� 
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Figure 4: Inverse square estimation error of the finite-� approximation for the OBE, Eq.
(20). Solid curves from the bottom ��� � 	 � ��� �  . The bottom curve is ����� . The dashed
line is the asymptotic behavior, given by Eq. (19). The FI bound is shown by the dotted
line. For the simulations

� � � � � , E � �
and L � 	�� � were used.

Comparing this form with Eq. (21) it can be seen that our readout is in the form of a bilinear
population vector in which the lowest Fourier modes of the response vector

�
have been

removed. Retaining only the high Fourier modes in the response profile suppresses the
cross-correlations between the different components of the residual responses �� 
 because
the underlying correlations have smooth spatial dependence, whose power is concentrated
mostly in the low Fourier modes. On the other hand, the information contained in the
variance is not removed because the variance contains a discontinuous spatial component,5 Q
 � ��� . In other words, the variance of a correlation profile which has only high Fourier
modes can still preserve its slowly varying components. Thus, by projecting out the low
Fourier modes of the spatial responses the spatial correlations are suppressed but the infor-
mation in the response variance is retained.

This interpretation of the bilinear readout implies that although all the elements of the
correlation matrix depend on the stimulus, only the stimulus dependence of the diagonal
elements is important. This important conclusion is borne out by our theoretical results
concerning the performance of the system. As Eqs. (11) and (19) show, the asymptotic
performance of both the full FI as well as that of the OBE are equivalent to those of an
uncorrelated population with a stimulus dependent variance which equals

5 Q
 � ��� .
Although we have presented results here concerning a multiplicative model of correlations,
we have studied other models of stimulus dependent correlations. These studies indicate
that the above conclusions apply to a broad class of populations in which information is
encoded in the second order statistics of the responses. Also, for the sake of clarity we
have assumed here that the mean responses are untuned,

* � � . Our studies have shown
that adding tuned mean inputs does not modify the picture since the smoothly varying
positive correlations greatly suppress the information embedded in the first order statistics.

The relatively simple form of the readout Eq. (22) suggests that neuronal hardware may
be able to extract efficiently information embedded in local populations of cells whose
noisy responses are strongly correlated, provided that the variances of their responses are
significantly tuned to the stimulus. This latter condition is not too restrictive, since tuning
of variances of neuronal firing rates to stimulus and motor variables is quite common in the
nervous system.
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