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Abstract 

The Vicinal Risk Minimization principle establishes a bridge between 
generative models and methods derived from the Structural Risk Mini
mization Principle such as Support Vector Machines or Statistical Reg
ularization. We explain how VRM provides a framework which inte
grates a number of existing algorithms, such as Parzen windows, Support 
Vector Machines, Ridge Regression, Constrained Logistic Classifiers and 
Tangent-Prop. We then show how the approach implies new algorithm
s for solving problems usually associated with generative models. New 
algorithms are described for dealing with pattern recognition problems 
with very different pattern distributions and dealing with unlabeled data. 
Preliminary empirical results are presented. 

1 Introduction 

Structural Risk Minimisation (SRM) in a learning system can be achieved using constraints 
on the parameter vectors, using regularization terms in the cost function, or using Support 
Vector Machines (SVM). All these principles have lead to well established learning algo
rithms. 

It is often said, however, that some problems are best addressed by generative models. The 
first problem is of missing data. We may for instance have a few labeled patterns and a 
large number of unlabeled patterns. Intuition suggests that these unlabeled patterns carry 
useful information. The second problem is of discriminating classes with very different 
pattern distributions. This situation arises naturally in anomaly detection systems. This 
also occurs often in recognition systems that reject invalid patterns by defining a garbage 
class for grouping all ambiguous or unrecognizable cases. Although there are successful 
non-generative approaches (Schuurmans and Southey, 2000) (Drucker, Wu and Vapnik, 
1999), the generative framework is undeniably appealing. Recent results (Jaakkola, Meila 
and Jebara, 2000) even define generative models that contain SVM as special cases. 

This paper discusses the Vicinal Risk Minimization (VRM) principle, summarily intro
duced in (Vapnik, 1999). This principle was independently hinted at by Tong and Koller 
(Tong and Koller, 2000) with a useful generative interpretation. In particular, they proved 
that SVM are a limiting case of their Restricted Bayesian Classifiers. We extend Tong's 
and Koller's result by showing that VRM subsumes several well known techniques such as 
Ridge Regression (Hoerl and Kennard, 1970), Constrained Logistic Classifier, or Tangent 
Prop (Simard et aI., 1992). We then go on to show how VRM naturally leads to simple algo-



rithms that can deal with problems for which one would have formally considered purely 
generative models. We provide algorithms and preliminary empirical results for dealing 
with unlabeled data or recognizing classes with very different pattern distributions. 

2 Vicinal Risk Minimization 

The learning problem can be formulated as the search of the function f E F that minimizes 
the expectation of a given loss £(f(x), y) . 

R(f) = f £(f(x), y) dP(x, y) (1) 

In the classification framework, y takes values ±1 and £(f(x) , y) is a step function such as 
1 - Sign(yf(x)), whereas in the regression framework, y is a real number and commonly 
£(f(x), y) is the mean squared error (f(x) _ y)2. 

The expectation (1) cannot be computed since the distribution P(x, y) is unknown. How
ever, given a training set {(Xi, Yi) h <i<n, it is common to minimize instead the empirical 
ri~: --

1 n 
Remp(f) = - L £(f(Xi)' Yi) 

n i=l 

Empirical Risk Minimization (ERM) is therefore equivalent to minimizing the expecta
tion of the loss function with respect to an empirical distribution Pemp(x,y) formed by 
assembling delta functions located on each example: 

1 n 
dPemp(x, y) = - LOx, (X)Oy, (y) 

n i=l 

(2) 

It is quite natural to consider improved density estimates by replacing the delta functions 
ox, (x) by some estimate of the density in the vicinity of the point Xi, PXi (X). 

1 n 
dPest(x, y) = - L dPx, (x)Oy'(y) 

n i=l 

(3) 

We can define in this way the vicinal risk of a function as: 

Rvic(f) = f £(f(x),y) dPest(x,y) = ~ t f £(f(x), Yi)dPXi (x) (4) 
~=1 

The Vicinal Risk Minimization principle consists of estimating argmin!EFR(f) by the 
function which minimizes the vicinal risk (4). In general, one can construct the VRM 
functional using any estimate dPest (x, y) of the density dP(x, y) , instead of restricting 
our choices to pointwise kernel estimates. 

Spherical gaussian kernel functions Nu(x - Xi) are otherwise an obvious choice for the 
local density estimate dPXi (x). The corresponding density estimate dPest is a Parzen win
dows estimate. The parameter u controls the scale of the density estimate. The extreme 
case u = 0 leads to the estimation of the density by delta functions and therefore leads to 
ERM. This must be distinguished from the case u -t 0 because the limit is taken after the 
minimization of the integral, leading to different results as shown in the next section. 

The theoretical analysis of ERM (Vapnik, 1999) shows that the crucial factor is the capacity 
of the class F offunctions. Large classes entail the risk of overfitting, whereas small classes 
entail the risk of underfitting. Two factors however are responsible for generalization of 
VRM, namely the quality of the estimate dPest and the size of the class F of functions. 



If dPest is a poor approximation to P then VRM can still perform well if F has suitably 
small capacity. ERM indeed uses a very naive estimate of dP and yet can provide good 
results. On the other hand, if F is not chosen with suitably small capacity then VRM can 
still perform well if the estimate dPest is a good approximation to dP. One can even take 
the set of all possible functions (whose capacity is obviously infinite) and still find a good 
solution if the estimate dPest is close enough to dP with an adequate metric. For example, 
if dPest is a Parzen window density estimate, then the Vicinal Risk minimizer is the Parzen 
window classifier. This latter property contrasts nicely with the ERM principle whose 
results strongly depend on the choice of the class of functions. Although we do not have a 
full theoretical understanding of VRM at this time, we expect considerable differences in 
the theoretical analysis of ERM and VRM. 

3 Special Cases 

We now discuss the relationship of VRM to existing methods. There are obvious links 
between VRM and Parzen windows or Nearest Neighbour when the set of functions F is 
unconstrained. Furthermore, many existing algorithms can be viewed as special cases of 
VRM for different choices of F and dPest . 

a) VRM Regression and Ridge Regression - Consider the case of VRM for regression 
with spherical Parzen windows (using gaussian kernel) with standard deviation u and with 
a family F of linear functions fw ,b(X) = W . x + b. We can write the vicinal risk as: 

Rvic(f) 

The resulting expression is the empirical risk augmented by a regularization term. The 
particular cost function above is known as the Ridge Regression cost function (Hoed and 
Kennard, 1970). 

This result can be extended to the case of non linear functions f by performing a Taylor 
expansion of f(Xi + £) . The corresponding regularization term then combines successive 
derivatives offunction f. Useful mathematical arguments can be found in (Leen, 1995). 

b) VRM and Invariant Learning - Generating synthetic examples is a simple way to 
incorporate selected invariances in a learning system. For instance, we can augment a 
optical character recognition database by applying applying translations or rotations to the 
initial examples. In the limit, this is equivalent to replacing each initial example by a 
distribution whose shape represents the desired invariances. This formulation naturally 
leads to a special case of VRM in which the local density estimates PXi (x) are elongated 
in the direction of invariance. 

Tangent-Prop (Simard et aI., 1992) is a more sophisticated way to incorporate invariances 
by adding an adequate regularization term to the cost function. Tangent-Prop has been 
formally proved to be equivalent to generating synthetic examples with infinitesimal defor
mations (Leen, 1995). This analysis makes Tangent-Prop a special case ofVRM. The local 



density estimate PXi is simply formed by Gaussian kernels with a covariance matrix whose 
eigenvectors describe the tangent direction to the invariant manifold. The eigenvalues then 
represent the respective strengths of the selected invariances. 

The tangent covariance matrix used in the SVM context by (Scholkopf et aI., 1998) speci
fies invariances globally. It can also been seen as a special case of VRM. 

c) VRM Classifier and Constrained Logistic Classifier - Consider the case of VRM for 
classification with spherical Parzen windows with standard deviation 0' and with a family 
F of linear functions fw,b(X) = W . x + b. We can assume without loss of generality that 
JJwJJ = 1. We can write the vicinal risk as: 

RVic(w,b) 1 n f :;;: L -Yi Sign(b + w . x) dPXi (x) 
i=l 

= 1 n f :;;: L -Yi Sign(b + W· Xi + W· e:) dNu(e:) 
,=1 

We can decompose e: = WEw + e:~ where WEw represents its component parallel to wand 
e:~ represents its orthogonal component. Since JJwJJ = 1, we have W • e: = Ew. After 
integrating over e:~ we are left with the following expression: 

The latter integral can be seen as the convolution of the Gaussian Nu (x) with the step func
tion Sign(x), which is a sigmoid shaped function with asymptotes at ±1. Using notation 
rp(x) = 2 erf(x) - 1, we can write: 

1 n (w. Xi + b) 
RVic(W, b) = :;;: ?= -Yi rp 0' 

,=1 

By rescaling wand b by a factor 1/0', we can write the following equivalent formulation 
of the VRM: 

Arg Min - - L Yi rp(w· Xi + b) {

In 

:i': constra:til~wJJ = 1/0' 

(5) 

Except for the minor shape difference between sigmoid functions, the above formulation 
describes a Logistic Classifier with a constraint on the weights. This formulation is also 
very close to using a single artificial neuron with a sigmoid transfer function and a weight 
decay. 

The above proof illustrates a general identity. Transforming the empirical probability es
timate (2) by convolving it with a kernel function is equivalent to transforming the loss 
function £(f (x), y) by convolving it with the same kernel function . This is summarized in 
the following equality, where * represents the convolution operator. 

f £(f(x),y) [NuO * dPemp (',y)] (x) = f [£(f(.),y) *NuO] (x) dPemp(x,y) 

d) VRM Classifier and SVM (Tong and Koller, 2000) - Consider again the case of 
VRM for classification with spherical Parzen windows with standard deviation 0' and with 
a family F of linear functions fw,b(X) = W . x + b. The resulting algorithm is in fact a 
Restricted Bayesian Classifier (Tong and Koller, 2000). Assuming that the examples are 



separable, Tong and Koller have shown that the resulting decision boundary tends towards 
the hard margin SVM decision boundary when a tends towards zero. 

The proof is based on the following observation: when a ~ 0, the vicinal risk (4) is domi
nated by the terms corresponding to the examples whose distance to the decision boundary 
is minimal. These examples in fact are the support vectors. On the other hand, choosing 
a > ° generates a decision boundary which depends on all the examples. The contribu
tion of each example decreases exponentially when its distance to the decision boundary 
increases. This is only slightly different from a soft margin SVM whose boundary relies 
on support vectors that can be more distant than those selected by hard margin SVM. The 
difference here is just in the cost functions (sigmoid compared to linear loss). 

e) SVM and Constrained Logistic Classifiers - The two previous paragraphs show that 
the same particular case of VRM is (a) equivalent to a Logistic Classifier with a constraint 
on the weights, and (b) tends towards the SVM classifier when a ~ ° and when the 
examples are separable. As a consequence, we can state that the Logistic Classifier decision 
boundary tends towards the SVM decision boundary when we relax the constraint on the 
weights. 

In practice we can find the SVM solution with a Logistic Classifier by simply using an 
iterative weight update algorithm such as gradient descent, choosing small initial weights, 
and letting the norm of the weights grow slowly while the iterative algorithm is running. 
Although this algorithm is not exact, it is fast and efficient. This is in fact similar to what 
is usually done with back-propagation neural networks (LeCun et aI., 1998). The same 
algorithm can be used for the VRM. In that context early stopping is similar to choosing 
the optimal a using cross-validation. 

4 New Algorithms and Results 

4.1 Adaptive Kernel Widths 

It is known in density estimation theory that the quality of the density estimate can be 
improved using variable kernel widths (Breiman, Meisel and Purcell, 1977). In regions 
of the space where there is little data, it is safer to have a smooth estimate of the density, 
whereas in the regions of the space there is more data one wants to be as accurate as 
possible via sharper kernel estimates. The VRM principle can take advantage of these 
improved density estimates for other problem domains. We consider here the following 
density estimate: 

1 
dPest(x, y) = - L 8Yi (y) NUi (x - Xi) dx 

n . 
~ 

where the specific kernel width ai for each training example Xi is computed from the 
training set. 

a) Wisconsin Breast Cancer - We made a first test of the method on the Wisconsin breast 
cancer dataset l which contains 589 examples on 30 dimensions. We compared VRM using 
the set of linear classifiers with various underlying density estimates. The minimization was 
achieved using gradient descent on the vicinal risk. All hyperparameters were determined 
using cross-validation. The following table reports results averaged on 100 runs. 

1 h up:1 /horn. first. gmd .de/ ..... raetschl data/breast -cancer. 



SoftSVM VRM VRM 
Training Set HardSVM Beste Best fixed U Adaptive Ui 

10 11.3% 11.1% 10.8% 9.6% 
20 8.3% 7.5% 6.9% 6.6% 
40 6.3% 5.5% 5.2% 4.8% 
80 5.4% 4.0% 3.9% 3.7% 

The adaptive kernel width Ui were computed by multiplying a global factor by the average 
distance of the five closest training examples. The best global factor is determined by cross
validation. These results suggest that VRM with adaptive kernel widths can outperform 
state of the art classifiers on small training sets. 

b) MNIST "I" versus other digits - A second test was performed using the MNIST 
handwritten digits2• We considered the sub-problem of recognizing the ones versus all 
other digits. The testing set contains 10000 digits (5000 ones and 5000 non-ones). Two 
training set sizes were considered with 250 or 500 ones and an equal number of non-ones. 
Computations were achieved using the algorithm suggested in section (3.e). We simply 
trained a single linear unit with a sigmoid transfer function using stochastic gradient up
dates. This is appropriate for implementing an approximate VRM with a single kernel 
width. Adaptive kernel widths are implemented by simply changing the slope of the sig
moid for each example. For each example Xi, the kernel width Ui is computed from the 
training set using the 5/1000th quantile of the distances of all other examples to example 
Xi. The sigmoid slopes are then computed by renormalizing the Ui in order to make their 
mean equal to 1. Early stopping was achieved with cross-validation. 

Training Set HardSVM 
VRM VRM 

Fixed slope Adaptive slope 
250+250 3.34% 2.79% 2.54% 
500+500 3.11 % 2.47% 2.27% 

1000+1000 2.94% 2.08% 1.96% 

The statistical signifiance of these results can be asserted with very high probability by 
comparing the list of errors performed by each system (Bottou and Vapnik, 1992). Again 
these results suggest that VRM with adaptive kernel widths can be very useful with small 
training sets. 

4.2 Unlabeled Data 

In some applications unlabeled data is in abundance whereas labeled data is not. The use 
of unlabeled data falls into the framework of VRM by simply making the same vicinal 
loss for unlabeled points. Given m unlabeled points xi, ... , x:n , one obtains the following 
formulation: 

1 n f 1 m f Rvic(f) =;;: L l(f(X),Yi)dPXi(x) + m L l(f(x),f(xn)dPx;(x) . 
i=l i=l 

To give an example of the usefulness of our approach consider the following example. 
Two normal distributions on the real line N( -1.6,1) and N(1.6, 1) model the patterns of 
two classes with equal probability; 20 labeled points and 100 unlabeled points are drawn. 
The following table compares the true generalization error of VRM with gaussian kernels 
and linear functions. Results are averaged over 100 runs. Two different kernel widths UL 

and Uu were used for kernels associated with labeled or unlabeled examples. Best kernel 
widths were obtained by cross-validation. We also studied the case UL -+ 0 in order to 
provide a result equivalent to a plain SVM. 

2http://www.research.att.com/ ... yannlocr/index.html 



aL -+ 0 
Best aL 

Best au 
Best au 

Labeled 
6.5% 
5.0% 

Labeled+Unlabeled 
5.6% 
4.3% 

Note that when both aL and au tend to zero, this algorithm reverts to a transduction al
gorithm due to Vapnik which was previously solved by the more difficult optimization 
procedure of integer programming (Bennet and Demiriz, 1999). 

5 Conclusion 

In conclusion, the Vicinal Risk Minimization VRM principle provides a useful bridge be
tween generative models and SRM methods such as SVM or Statistic Regularization. Sev
eral well known algorithms are in fact special cases of VRM. The VRM principle also sug
gests new algorithms. In this paper we proposed algorithms for dealing with unlabeled data 
and recognizing classes with very different pattern distributions, obtaining initial promising 
results. We hope that this approach can lead to further understanding of existing methods 
and also to suggest new ones. 
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