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Abstract 

In this paper we formulate a description of the computation per­
formed by a neuron as a combination of dimensional reduction 
and nonlinearity. We implement this description for the Hodgkin­
Huxley model, identify the most relevant dimensions and find the 
nonlinearity. A two dimensional description already captures a 
significant fraction of the information that spikes carry about dy­
namic inputs. This description also shows that computation in the 
Hodgkin-Huxley model is more complex than a simple integrate­
and-fire or perceptron model. 

1 Introduction 

Classical neural network models approximate neurons as devices that sum their 
inputs and generate a nonzero output if the sum exceeds a threshold. From our 
current state of knowledge in neurobiology it is easy to criticize these models as over­
simplified: where is the complex geometry of neurons, or the many different kinds 
of ion channel, each with its own intricate multistate kinetics? Indeed, progress at 
this more microscopic level of description has led us to the point where we can write 
(almost) exact models for the electrical dynamics of neurons, at least on short time 
scales. These nearly exact models are complicated by any measure, including tens 
if not hundreds of differential equations to describe the states of different channels 
in different spatial compartments of the cell. Faced with this detailed microscopic 
description, we need to answer a question which goes well beyond the biological 
context: given a continuous dynamical system, what does it compute? 

Our goal in this paper is to make this question about what a neuron computes some­
what more precise, and then to explore what we take to be the simplest example, 
namely the Hodgkin- Huxley model [1],[2] (and refs therein). 

2 What do we mean by the question? 

Real neurons take as inputs signals at their synapses and give as outputs sequences 
of discrete, identical pulses-action potentials or 'spikes'. The inputs themselves 
are spikes from other neurons, so the neuron is a device which takes N '" 103 pulse 
trains as inputs and generates one pulse train as output. If the system operates at 2 
msec resolution and the window of relevant inputs is 20 msec, then we can think of 
a single neuron as having an input described by a '" x 104 bit word-the presence 
or absence of a spike in each 2 msec bin for each presynaptic cell-which is then 
mapped to a one (spike) or zero (no spike). More realistically, if the average spike 



rates are'" 10 sec-1, the input words can be compressed by a factor of ten. Thus we 
might be able to think about neurons as evaluating a Boolean function of roughly 
1000 Boolean variables, and then characterizing the computational function of the 
cell amounts to specifying this Boolean function. 

The above estimate, though crude, makes clear that there will be no direct empirical 
attack on the question of what a neuron computes: there are too many possibilities 
to learn the function by brute force from any reasonable set of experiments. Progress 
requires the hypothesis that the function computed by a neuron is not arbitrary, but 
belongs to a simple class. Our suggestion is that this simple class involves functions 
that vary only over a low dimensional subspace of the inputs, and in fact we will 
start by searching for linear subspaces. 

Specifically, we begin by simplifying away the spatial structure of neurons and take 
inputs to be just injected currents into a point- like neuron. While this misses some 
of the richness in real cells, it allows us to focus on developing our computational 
methods. Further, it turns out that even this simple problem is not at all trivial. If 
the input is an injected current, then the neuron maps the history of this current, 
I(t < to), into the presence or absence of a spike at time to. More generally we might 
imagine that the cell (or our description) is noisy, so that there is a probability of 
spiking P[spike@toII(t < to)] which depends on the current history. We emphasize 
that the dependence on the history of the current means that there still are many 
dimensions to the input signal even though we have collapsed any spatial variations. 
If we work at time resolution flt and assume that currents in a window of size T 
are relevant to the decision to spike, then the inputs live in a space of D = T / flt, 
of order 100 dimensions in many interesting cases. 

If the neuron is sensitive only to a low dimensional linear subspace, we can define 
a set of signals S1, S2,···, SK by filtering the current, 

s,.. = 100 dtf,..(t)I(to - t), (1) 

so that the probability of spiking depends only on this finite set of signals, 

P[spike@toII(t < to)] = P[spike@to]g(s1,s2,· .. ,SK), (2) 
where we include the average probability of spiking so that 9 is dimensionless. If we 
think of the current I(t < to) as a vector, with one dimension for each time sample, 
then these filtered signals are linear projections of this vector. 

In this formulation, characterizing the computation done by a neuron means esti­
mating the number of relevant stimulus dimensions (K, hopefully much less than 
D), identifying the filters which project into this relevant subspace,! and then char­
acterizing the nonlinear function g(8) . The classical perceptron- like cell of neural 
network theory has only one relevant dimension and a simple form for g. 

3 Identifying low-dimensional structure 

The idea that neurons might be sensitive only to low-dimensional projections of 
their inputs was developed explicitly in work on a motion sensitive neuron of the 
fly visual system [3]. Rather than looking at the distribution P[spike@tols(t < to)], 
with s(t) the input signal (velocity of motion across the visual field in [3]), that 
work considered the distribution of signals conditional on the response, P[s(t < 
to)lspike@to]; these are related by Bayes' rule, 

P[spike@tols(t < to)] = P[s(t < to)lspike@to] (3) 
______ ----'P=-[=sp=ik=e:..::@=to]P[s(t<to)] 

lNote that the individual filters don't really have any meaning; what is meaningful is 
the projection operator that is formed by the whole set of these filters. Put another way, 
the individual filters specify both a K - dimensional subspace and a coordinate system on 
this subspace, but there is no reason to prefer one coordinate system over another. 



Within the response conditional ensemble P[s(t < to)lspike@to] we can compute 
various moments. Thus the spike triggered average stimulus, or reverse correlation 
function [4], is the first moment 

ST A(T) = j [ds] P[s(t < to)lspike@to]s(to - T). (4) 

We can also compute the covariance matrix of fluctuations around this average, 

Cspike(T,T') = j[dS] P[s(t < to)lspike@to]s(to-T)s(to-T')-STA(T)STA(T'). (5) 

In the same way that we compare the spike triggered average to some constant 
average level ofthe signal (which we can define to be zero) in the whole experiment, 
we want to compare the covariance matrix Cspike with the covariance of the signal 
averaged over the whole experiment, 

Cprior(T,T') = j[dS] P[s(t < to)]s(to - T)S(tO - T'). (6) 

Notice that all of these covariance matrices are D x D in size. The surprising find­
ing of [3] was that the change in the covariance matrix, t1C = Cs ike - Cprior, had 
only a very small number of nonzero eigenvalues. In fact it can be shown that if 
the probability of spiking depends on K linear projections of the stimulus as in eq. 
(2), and if the inputs s(t) are chosen from a Gaussian distribution, then the rank 
of the matrix t1C is exactly K. Further, the eigenvectors associated with nonzero 
eigenvalues span the relevant subspace (up to a rotation associated with the auto­
correlations in the inputs. Thus eigenvalue analysis of the spike triggered covariance 
matrix gives us a direct way to search for a low dimensional linear subspace that 
captures the relevant stimulus features. 

4 The Hodgkin-Huxley model 

We recall the details of the Hodgkin-Huxley model and note some special features 
that guide our analysis. Hodgkin and Huxley [1] modeled the dynamics of the 
current through a patch of membrane by flow through ion-specific conductances: 

dV 
I(t) = Cdt + 9Kn4 (V - VK) + 9Nam3h (V - VNa) + 91 (V - VI), (7) 

where K and N a subscripts denote potassium- and sodium-related variables, re­
spectively, and l (for 'leakage') terms are a catch-all for other ion species with slower 
dynamics. C is the membrane capacitance. The subscripted voltages VI and VNa 
are ion-specific reversal potentials. 91, 9K and 9Na are empirically determined max­
imal conductances for the different ions,2 and the gating variables n, m and h (on 
the interval [0,1]) have their own voltage dependent dynamics: 

dn/dt = 
dm/dt = 

dh/dt = 

(O.OlV + 0.1)(1 - n) exp( -O.lV) - 0.125n exp(V/80) 
(0.1 V + 2.5)(1- m) exp( -0.1 V - 1.5) - 4m exp(V/18) 
0.07(1 - h) exp(0.05V) - h exp( -0.1 V - 4), 

with V in m V and t in msec. 

(8) 

Here we are interested in dynamic inputs I(t), but it is important to remember 
that for constant inputs the Hodgkin-Huxley model undergoes a Hopf bifurcation 
to spike at a constant frequency; further, this frequency is rather insensitive to the 
precise value of the input above onset. This 'rigidity' of the system is felt also in 

2We have used the original parameters, with a sign change for voltages: C = lJ.tF /cm2, 
gK = 36mU/cm2, gNa = 120mU/cm2, gl = O.3mU/cm2, VK = -12mV, VNa = +115mV, 
Vi = +10.613mV. We have taken our system to be a 7r x 302 J.tm2 patch of membrane. 



many regimes of dynamic stimulation, and can be thought of as a strong interaction 
among successive spikes. These interactions lead to long memory times, reflecting 
the infinite phase memory of the periodic orbit which exists for constant input. 
While spike interactions are interesting, we want to focus on the way that input 
current modulates the probability of spiking. To separate these effects we consider 
only 'isolated' spikes. These are defined by accumulating the interspike interval 
distribution and noticing that for some intervals t > tc the distribution decays 
exponentially, which means that the system has lost memory of the previous spike; 
thus spikes which are more than tc after the previous spike are isolated. 

In what follows we consider the response of the Hodgkin- Huxley model to currents 
I(t) with zero mean, 0.275 nA standard deviation, and 0.5 msec correlation time. 

5 How many dimensions? 

Fig. 1 shows the change in covariance matrix f1C( r, r') for isolated spikes in our HH 
simulation, and fig. 2(a) shows the resulting spectrum of eigenvalues as a function 
of sample size. The result strongly suggests that there are many fewer than D 
relevant dimensions. In particular, there seem to be two outstanding modes; the 
STA itself lies largely in the subspace of these modes, as shown in Fig. 2(b). 
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Figure 1: The isolated spike triggered covariance matrix f1C(r,r'). 

The filters themselves, shown in fig. 3, have simple forms; in particular the second 
mode is almost exactly the derivative of the first. If the neuron filtered its inputs 
and generated a spike when the output of the filter crosses threshold, we would 
find that there are two significant dimensions, corresponding to the filter and its 
derivative. It is tempting to suggest, then, that this is a good approximation to the 
HH model, but we will see that this is not correct. Notice also that both filters have 
significant differentiating components- the cell is not simply integrating its inputs. 

Although fig. 2(a) suggests that two modes dominate, it also demonstrates that the 
smaller nonzero eigenvalues of the other modes are not just noise. The width of any 
spectral band of eigenvalues near zero due to finite sampling should decline with 
increasing sample size. However, the smaller eigenvalues seen in fig. 2(a) are stable. 
Thus while the system is primarily sensitive to two dimensions, there is something 
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Figure 2: (a) Convergence ofthe largest 32 eigenvalues of the isolated spike triggered 
covariance with increasing sample size_ (b) Projections of the isolated STA onto 
the covariance modes_ 
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Figure 3: Most significant two modes of the spike-triggered covariance_ 

missing in this picture. To quantify this, we must first characterize the nonlinear 
function g(81' 82). 

6 Nonlinearity and information 

At each instant of time we can find the relevant projections of the stimulus 81 and 
82. By construction, the distribution of these signals over the whole experiment, 
P(81, 82), is Gaussian. On the other hand, each time we see a spike we get a sample 
from the distribution P(81' 82Ispike@to), leading to the picture in fig. 4. The prior 
and spike conditional distributions clearly are better separated in two dimensions 
than in one, which means that our two dimensional description captures more than 
the spike triggered average. Further, we see that the spike conditional distribution 
is curved, unlike what we would expect for a simple thresholding device. 

Combining eq's. (2) and (3), we have 

( ) _ P(81,82Ispike@to) 
9 81, 82 - P( ) , 81,82 

(9) 

so that these two distributions determine the input/output relation of the neuron 
in this 2D space. We emphasize that although the subspace is linear, 9 can have 
arbitrary nonlinearity. Fig. 4 shows that this input/output relation has sharp 
edges, but also some fuzziness. The HH model is deterministic, so in principle the 
input/output relation should be a c5 function: spikes occur only when certain exact 
conditions are met. Of course we have blurred things a bit by working at finite time 
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Figure 4: 104 spike-conditional stimuli projected along the first 2 covariance modes. 
The circles represent the cumulative radial integral of the prior distribution from 
00; the ring marked 10-4, for example, encloses 1 - 10-4 of the prior. 

resolution. Given that we work at finite llt, spikes carry only a finite amount of 
information, and the quality of our 2D approximation can be judged by asking how 
much of this information is captured by this description. 

As explained in [5], the arrival time of a single spike provides an information 

lonespike = ( r~) log2 [r~)] ), (10) 

where r(t) is the time dependent spike rate, f is the average spike rate, and ( . . . ) 
denotes an average over time. With a deterministic model like HH, the rate r(t) 
either is zero or corresponds to one spike occurring in one bin of size llt, that is 
r = l/11t. The result is that lonespike = -log2(fllt). 

On the other hand, if the probability of spiking really depends only on the stimulus 
dimensions 81 and 82, we can substitute 

r(t) P(81,82Ispike@t) 
- -+ ---'--=::::-:-=--'--=----:---"-

f P(81,82)' 
(11) 

and use the ergodicity of the stimulus to replace time averages in Eq. (10). Then 
we find [3, 5] 

(12) 

If our two dimensional approximation were exact we would find l~~~s:pike = lone spike; 

more generally we will find 1~~~ss2pike ~ lone spike, and the fraction of the information 
we capture measures the quality of the approximation. This fraction is plotted in 
fig. 5 as a function of time resolution. For comparison, we also show the information 
captured by considering only the stimulus projection along the STA. 
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Figure 5: Fraction of spike timing information captured by STA (lower curve) and 
projection onto covariance modes 1 and 2 (upper curve). 

7 Discussion 

The simple, low-dimensional model described captures a substantial amount of 
information about spike timing for a HH neuron. The fraction is maximal near 
bot = 5.5msec, reaching nearly 70%. However, the absolute information captured 
saturates for both the 1D and 2D cases, at RJ 3.5 and 5 bits respectively, for smaller 
bot. Hence the information fraction captured plummets; recovering precise spike 
timing requires a more complex, higher dimensional representation of the stimulus. 

Is this effect important, or is timing at this resolution too noisy for this extra 
complexity to matter in a real neuron? Stochastic HH simulations have suggested 
that, when realistic noise sources are taken into account, the timing of spikes in 
response to dynamic stimuli is reproducible to within 1- 2 msec [6]. This suggests 
that such timing details may indeed be important. 

Even in 2D, one can observe that the spike conditional distribution is curved (fig. 4); 
it is likely to curve along other dimensions as well. It may be possible to improve our 
approximation by considering the computation to take place on a low-dimensional 
but curved manifold, instead of a linear subspace. The curvature in Fig. 4 also 
implies that the computation in the HH model is not well approximated by an 
integrate and fire model, or a perceptron model limited to linear separations. 

Characterizing the complexity of the computation is an important step toward 
understanding neural systems. How to quantify this complexity theoretically is 
an area for future work; here, we have made progress toward this goal by describing 
such computations in a compact way and then evaluating the completeness of the 
description using information. The techniques presented are applicable to more 
complex models, and of course to real neurons. How does the addition of more 
channels increase the complexity of the computation? Will this add more relevant 
dimensions or does the non-linearity change? 
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