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Abstract 

A central issue in principal component analysis (PCA) is choosing the 
number of principal components to be retained. By interpreting PCA as 
density estimation, we show how to use Bayesian model selection to es­
timate the true dimensionality of the data. The resulting estimate is sim­
ple to compute yet guaranteed to pick the correct dimensionality, given 
enough data. The estimate involves an integral over the Steifel manifold 
of k-frames, which is difficult to compute exactly. But after choosing an 
appropriate parameterization and applying Laplace's method, an accu­
rate and practical estimator is obtained. In simulations, it is convincingly 
better than cross-validation and other proposed algorithms, plus it runs 
much faster. 

1 Introduction 

Recovering the intrinsic dimensionality of a data set is a classic and fundamental problem 
in data analysis. A popular method for doing this is PCA or localized PCA. Modeling the 
data manifold with localized PCA dates back to [4]. Since then, the problem of spacing and 
sizing the local regions has been solved via the EM algorithm and split/merge techniques 
[2, 6, 14,5]. 

However, the task of dimensionality selection has not been solved in a satisfactory way. 
On the one hand we have crude methods based on eigenvalue thresholding [4] which are 
very fast, or we have iterative methods [1] which require excessive computing time. This 
paper resolves the situation by deriving a method which is both accurate and fast. It is 
an application of Bayesian model selection to the probabilistic PCA model developed by 
[12, 15]. 

The new method operates exclusively on the eigenvalues of the data covariance matrix. In 
the local PCA context, these would be the eigenvalues of the local responsibility-weighted 
covariance matrix, as defined by [14]. The method can be used to fit different PCA models 
to different classes, for use in Bayesian classification [11]. 

2 Probabilistic peA 

This section reviews the results of [15]. The PCA model is that a d-dimensional vector x 
was generated from a smaller k-dimensional vector w by a linear transformation (H, m) 



plus a noise vector e: x = Hw + m + e. Both the noise and the principal component 
vector ware assumed spherical Gaussian: 

(1) 

The observation x is therefore Gaussian itself: 

p(xIH, m, v) '" N(m, HHT + vI) (2) 

The goal of PCA is to estimate the basis vectors H and the noise variance v from a data set 
D = {Xl, ... , XN }. The probability of the data set is 

p(DIH,m,v) (27f)-Nd/2IHHT + vII- N/2 exp(-~tr((HHT + VI)-lS)) (3) 

S = I)Xi - m)(xi - m)T (4) 

As shown by [15], the maximum-likelihood estimates are: 

A 1 ~ 
m= N~xi 

i 

"'~ A' 
A _ L."J=k+l J 
V - d-k (5) 

where orthogonal matrix U contains the top k eigenvectors of SIN, diagonal matrix A 
contains the corresponding eigenvalues, and R is an arbitrary orthogonal matrix. 

3 Bayesian model selection 

Bayesian model selection scores models accord­
ing to the probability they assign the observed 
data [9, 8]. It is completely analogous to Bayesian 
classification. It automatically encodes a pref­
erence for simpler, more constrained models, as 
illustrated in figure 1. Simple models only fit 
a small fraction of data sets, but they assign 
correspondingly higher probability to those data 
sets. Flexible models spread themselves out more 
thinly. 

The probability of the data given the model is 
computed by integrating over the unknown pa­
rameter values in that model: 

p(D I M) n. ~""";"'" model 

flexible model 

------~--_r~------ D 
constrained flexible 
model wins model wins 

Figure 1: Why Bayesian model se­
lection prefers simpler models 

p(DIM) = fo p(DIO)p(OIM)dO (6) 

This quantity is called the evidence for model M. A useful property of Bayesian model 
selection is that it is guaranteed to select the true model, if it is among the candidates, as 
the size of the dataset grows to infinity. 

3.1 The evidence for probabilistic peA 

For the PCA model, we want to select the subspace dimensionality k. To do this, we com­
pute the probability of the data for each possible dimensionality and pick the maximum. For 
a given dimensionality, this requires integrating over all PCA parameters (m, H, v) . First 
we need to define a prior density for these parameters. Assuming there is no information 



other than the data D, the prior should be as noninformative as possible. A non informative 
prior for m is uniform, and with such a prior we can integrate out m analytically, leaving 

p(DIH, v) = N-d/2(27f)-(N-1)d/2IHHT + vII-(N-1)/2 exp( -~tr((HHT +VI)-lS)) 

(7) 

where S = ~)Xi - m)(Xi - m)T (8) 

Unlike m, H must have a proper prior since it varies in dimension for different models. 
Let H be decomposed just as in (5): 

(9) 

where L is diagonal with diagonal elements k The orthogonal matrix U is the basis, L is 
the scaling (corrected for noise), and R is a rotation within the subspace (which will turn 
out to be irrelevant). A conjugate prior for (U, L, R, v), parameterized by a, is 

p(U,L,R,v) ex IHHT +vII-(a+2)/2exp(_~tr((HHT +VI)-l)) (10) 

This distribution happens to factor into p(U)p(L )p(R)p( v) , which means the variables are 
a-priori independent: 

p(L) ex ILI-(a+2)/2 exp( -::tr(L -1)) 
2 

(11) 

p(v) ex v-(a+2)(d-k)/2 exp( _ a(d - k)) 
2v 

(12) 

p(U)p(R) (constant-defined in (20» (13) 

The hyperparameter a controls the sharpness of the prior. For a noninformative prior, 
a should be small, making the prior diffuse. Besides providing a convenient prior, the 
decomposition (9) is important for removing redundant degrees of freedom (R) and for 
separating H into independent components, as described in the next section. 

Combining the likelihood with the prior gives 

p(Dlk) =Ck /IHHT +vII-n/2exp(-~tr((HHT +vI)-l(S+aI)))dUdLdv (14) 

n = N + 1 + a (15) 

The constant Ck includes N-d/2 and the normalizing terms for p(U) , p(L), and p(v) 
(given in [lO])-only p(U) will matter in the end. In this formula R has already been 
integrated out; the likelihood does not involve R so we just get a multiplicative factor of 
JRP(R) dR = 1. 

3.2 Laplace approximation 

Laplace's method is a powerful method for approximating integrals in Bayesian statistics 
[8]: 

/ f(())d() ~ f(B)(27f),ows(A)/2IAI- 1/ 2 (16) 

(17) 

The key to getting a good approximation is choosing a good parameterization for () = 
(U, L, v). Since li and v are positive scale parameters, it is best to use l~ = log(li) and 



v' = log( v). This results in 

f. _ NAi + a: 
,- N-1+a: 

~ N~:=k+1 Aj 
v= n(d-k)-2 (18) 

d2 10g f((}) I = _ N - 1 + a: 
(dlD2 ()=o 2 

d2 10g f((}) I = _ n(d - k) - 2 (19) 
(dV')2 ()=o 2 

The matrix U is an orthogonal k-frame and therefore lives on the Stiefel manifold [7], 
which is defined by condition (9). The dimension of the manifold is m = dk - k(k + 1) /2, 
since we are imposing k(k + 1)/2 constraints on a d x k matrix. The prior density for U 
is the reciprocal of the area of the manifold [7]: 

k 

p(U) = Tk II r((d - i + 1)/2)7f-(d-i+1)/2 (20) 
i=l 

A useful parameterization of this manifold is given by the Euler vector representation: 

(21) 

where U d is a fixed orthogonal matrix and Z is a skew-symmetric matrix of parameters, 
such as 

Z = [-~12 Zt/ ~~: 1 (22) 
- Z13 -Z23 0 

The first k rows of Z determine the first k columns of exp(Z), so the free parameters are Zij 
with i < j and i ::; k; the others are constant. This gives d(d-1)/2-(d-k)(d-k-1)/2 = 
m parameters, as desired. For example, in the case (d = 3, k = 1) the free parameters are 
Z12 and Z13, which define a coordinate system for the sphere. 

As a function of U, the integrand is simply 

1 
p(UID, L, v) ex: exp( -2tr((L -1 - v-1I)UT SU)) (23) 

The density is maximized when U contains the top k eigenvectors of S . However, the 
density is unchanged if we negate any column of U. This means that there are actually 
2k different maxima, and we need to apply Laplace's method to each. Fortunately, these 
maxima are identical so can simply multiply (16) by 2k to get the integral over the whole 
manifold. If we set U d to the eigenvectors of S: 

uIsud = N A (24) 

then we just need to apply Laplace's method at Z = O. As shown in [10], if we define the 
estimated eigenvalue matrix 

A = [~ VI~-J (25) 

then the second differential at Z = 0 simplifies to 

k d 

2 I " " ~ -1 ~ -1 2 d logf((}) Z=Q = - L...J L...J (\ - \ )(Ai - Aj)Ndzij (26) 
i=l j=i+1 

There are no cross derivatives; the Hessian matrix Az is diagonal. So its determinant is 
the product of these second derivatives: 

k d 

IAzl = II II (.~j1 - ~i1)(Ai - Aj)N (27) 
i=l j=i+1 



Laplace's method requires this to be nonsingular, so we must have k < N. The cross­
derivatives between the parameters are all zero: 

cP log 1(0) I = d2 10g 1(0) I = d2 10g 1(0) I = 0 (28) 
dlidZ 0=0 dvdZ 0=0 dlidv 0=0 

so A is block diagonal and IAI = IAzIIALIIAvl. We know AL from (19), Av from (19), 
and Az from (27). We now have all of the terms needed in (16), and so the evidence 
approximation is 

p(Dlk) RJ 2kck i v-n(d-k)/2e-nd/2(27r)(m+k+1)/2IAzl-l/2IALI-1/2IAvl-1/2 I l-n/2 

(29) 
For model selection, the only terms that matter are those that strongly depend on k, and 
since D: is small and N reasonably large we can simplify this to 

p(Dlk) RJ p(U) (g A;) -NI'iJ-N(,-.)I'(2.)(m+k)I' IAzl-'I' N-'I' 

~ Et=k+l Aj 
v = d- k 

(30) 

(31) 

which is the recommended formula. Given the eigenvalues, the cost of computing p(D Ik) 
is O(min(d, N)k), which is less than one loop over the data matrix. 

A simplification of Laplace's method is the BIC approximation [8]. This approximation 
drops all terms which do not grow with N, which in this case leaves only 

( ) 

-N/2 

p(Dlk) RJ g Aj v- N (d-k)/2 N-(m+k)/2 (32) 

BIC is compared to Laplace in section 4. 

4 Results 

To test the performance of various algorithms for model selection, we sample data from a 
known model and see how often the correct dimensionality is recovered. The seven esti­
mators implemented and tested in this study are Laplace's method (30), BIC (32), the two 
methods of [13] (called RR-N and RR-U), the algorithm in [3] (ER), the ARD algorithm 
of [1], and 5-fold cross-validation (CV). For cross-validation, the log-probability assigned 
to the held-out data is the scoring function. ER is the most similar to this paper, since it 
performs Bayesian model selection on the same model, but uses a different kind of ap­
proximation combined with explicit numerical integration. RR-N and RR-U are maximum 
likelihood techniques on models slightly different than probabilistic PCA; the details are 
in [10]. ARD is an iterative estimation algorithm for H which sets columns to zero un­
less they are supported by the data. The number of nonzero columns at convergence is the 
estimate of dimensionality. 

Most of these estimators work exclusively from the eigenvalues of the sample covariance 
matrix. The exceptions are RR-U, cross-validation, and ARD; the latter two require diag­
onalizing a series of different matrices constructed from the data. In our implementation, 
the algorithms are ordered from fastest to slowest as RR-N, mc, Laplace, cross-validation, 
RR-U, ARD, and ER (ER is slowest because of the numerical integrations required). 



The first experiment tests the data-rich case where 
N > > d. The data is generated from a lO-dimensional 
Gaussian distribution with 5 "signal" dimensions and 
5 noise dimensions. The eigenvalues of the true co-
variance matrix are: 

Signal Noise 
N = 100 108642 1(x5) 

The number of times the correct dimensionality (k = 
5) was chosen over 60 replications is shown at right. 
The differences between ER, Laplace, and CV are not 
statistically significant. Results below the dashed line 
are worse than Laplace with a significance level of 
95%. 

The second experiment tests the case of sparse data 
and low noise: 

Signal Noise 
N= 10 108642 0.1 (xl0) 

The results over 60 replications are shown at right. 
BIC and ER, which are derived from large N approx­
imations, do poorly. Cross-validation also fails, be­
cause it doesn't have enough data to work with. 

The third experiment tests the case of high noise di­
mensionality: 

Signal Noise 
N=60 10 8 642 0.25 (x95) 

The ER algorithm was not run in this case because of 
its excessive computation time for large d. 

The final experiment tests the robustness to having a 
non-Gaussian data distribution within the subspace. 
We start with four sound fragments of 100 samples 
each. To make things especially non-Gaussian, the val­
ues in third fragment are squared and the values in the 
fourth fragment are cubed. All fragments are standard­
ized to zero mean and unit variance. Gaussian noise in 
20 dimensions is added to get: 

Signal Noise 
N = 100 4 sounds 0.5 (x20) 

The results over 60 replications of the noise (the sig­
nals were constant) are reported at right. 

5 Discussion 

ER Laplace CV BIC ARD RRN RRU 

Laplace CV ARD RRU BlC RAN 

Laplace ARD CV BIC RRN RRU ER 

Bayesian model selection has been shown to provide excellent performance when the as­
sumed model is correct or partially correct. The evaluation criterion was the number of 
times the correct dimensionality was chosen. It would also be useful to evaluate the trained 
model with respect to its performance on new data within an applied setting. In this case, 



Bayesian model averaging is more appropriate, and it is conceivable that a method like 
ARD, which encompasses a soft blend between different dimensionalities, might perform 
better by this criterion than selecting one dimensionality. 

It is important to remember that these estimators are for density estimation, i.e. accurate 
representation of the data, and are not necessarily appropriate for other purposes like re­
ducing computation or extracting salient features. For example, on a database of 301 face 
images the Laplace evidence picked 120 dimensions, which is far more than one would 
use for feature extraction. (This result also suggests that probabilistic PCA is not a good 
generative model for face images.) 
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