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Abstract 

Chris Diorio 

Competitive learning is a technique for training classification and 
clustering networks. We have designed and fabricated an 11-
transistor primitive, that we term an automaximizing bump circuit, 
that implements competitive learning dynamics. The circuit per
forms a similarity computation, affords nonvolatile storage, and 
implements simultaneous local adaptation and computation. We 
show that our primitive is suitable for implementing competitive 
learning in VLSI, and demonstrate its effectiveness in a standard 
clustering task. 

1 Introduction 

Competitive learning is a family of neural learning algorithms that has proved use
ful for training many classification and clustering networks [1]. In these networks, a 
neuron's synaptic weight vector typically represents a tight cluster of data points. 
Upon presentation of a new input to the network, the neuron representing the closest 
cluster adapts its weight vector, decreasing the difference between the weight vector 
and present input. Details on this adaptation vary for different competitive learning 
rules, but the general functionality of the synapse is preserved across various com
petitive learning networks. These functions are weight storage, similarity computa
tion, and competitive learning dynamics. 

Many VLSI implementations of competitive learning have been reported in the lit
erature [2]. These circuits typically use digital registers or capacitors for weight 
storage. Digital storage is expensive in terms of die area and power consumption; 
capacitive storage typically requires a refresh scheme to prevent weight decay. In 
addition, these implementations require separate computation and weight-update 
phases, increasing complexity. More importantly, neural networks built with these 
circuits typically do not adapt during normal operation. 

Synapse transistors [3][4] address the problems raised in the previous paragraph. 
These devices use the floating-gate technology to provide nonvolatile analog storage 
and local adaptation in silicon. The adaptation mechanisms do not perturb the opera
tion of the device, thus enabling simultaneous adaptation and computation. Unfortu
nately, the adaptation mechanisms provide dynamics that are difficult to translate 



into existing neural-network learning rules. Allen et. al. [5] proposed a silicon com
petitive learning synapse that used floating gate technology in the early 90's. How
ever, that approach suffers from asymmetric adaptation due to separate mechanisms 
for increasing and decreasing weight values. In addition, they neither characterized 
the adaptation dynamics of their device, nor demonstrated competitive learning with 
their device. 

We present a new silicon primitive, the automaximizing bump circuit, that uses 
synapse transistors to implement competitive learning in silicon. This ll-transistor 
circuit computes a similarity measure, provides nonvolatile storage, implements 
local adaptation, and performs simultaneous adaptation and computation. In addi
tion, the circuit naturally exhibits competitive learning dynamics. In this paper, we 
derive the properties of the automaximizing bump circuit directly from the physics 
of synapse transistors, and corroborate our analysis with data measured from a chip 
fabricated in a 0.351lm CMOS process. In addition, experiments on a competitive 
learning circuit, and software simulations of the learning rule, show that this device 
provides a suitable primitive for competitive learning. 

2 Synapse transistors 

The automaxmizing bump circuit's behavior depends on the storage and adaptation 
properties of synapse transistors . Therefore this section briefly reviews these de
vices. A synapse transistor comprises a floating-gate MOSFET, with a control gate 
capacitively coupled to the floating gate, and an associated tunneling implant. The 
transistor uses floating-gate charge to implement a nonvolatile analog memory, and 
outputs a source current that varies with both the stored value and the control-gate 
voltage. The synapse uses two adaptation mechanisms: Fowler-Nordheim tunneling 
[6] increases the stored charge; impact-ionized hot-electron injection (IHEI) [7] 
decreases the charge. Because tunneling and IHEI can both be active during normal 
transistor operation, the synapse enables simultaneous adaptation and computation. 

A voltage difference between the floating gate and the tunneling implant causes 
electrons to tunnel from the floating gate, through gate oxide, to the tunneling im
plant. We can approximate this current (with respect to fixed tunneling and floating
gate voltages, V tunO and V go ) as [4]: 

(1) 

where ItunO and Vx are constants that depend on V tunO and V gO , and Ll V tun and Ll Vg are 
deviations of the tunneling and floating gate voltages from these fixed levels . 

IHEI adds electrons to the floating gate, decreasing its stored charge. The IHEI 
current increases with the transistor's source current and drain-to-source voltage; 
over a small drain-voltage range, we model this dependence as [3][4]: 

(2) 

where the constant Vy depends on the VLSI process, and Ut is the thermal voltage. 

3 Automaximizing bump circuit 

The automaximizing bump circuit (Fig. 1) is an adaptive version of the classic 
bump-antibump circuit [8]. It uses synapse transistors to implement the three essen
tial functions of a competitive learning synapse: storage of a weight value f1" com
putation of a similarity measure between the input and f1" and the ability to move f1, 
closer to the input. Both circuits take two inputs, VI and V2 , and generate three cur-
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Figure 1. (a) Automaximizing bump cir
cuit. MI-M5 form the classic bump
antibump circuit; we added M6-MII and 
the floating gates. (b) Data showing that 
the circuit computes a similarity between 
the input, V in , and the stored value, /-l, for 
three different stored weights. Yin is rep
resented as VI =+ Vin12, V2=-Vin/2. 

rents. The two outside currents, II and /Z, are a measure of the dissimilarity between 
the two inputs; the center current, Imid' is a measure of their similarity: 

~ 2 -1 
Imid = Ib(l+l\,cosh (K~V)) (3) 

where A, and K are process and design-dependent parameters, ~ V is the voltage dif
ference between VI and V2 , and h is a bias current. Imid is symmetric with respect to 
the difference between VI and V2 , and approximates a Gaussian centered at ~ V = O. 

We augment the bump-anti bump circuit by adding floating gates and tunneling junc
tions to MI-M5, turning them into synapse transistors; MI and M3 share the same 
floating gate and tunneling junction, as do M2 and M4. We also add transistors M6-
MIl to control IHEI. For convenience, we will refer to our new circuit merely as a 
bump circuit. The charge stored on the bump circuit's floating gates, QI and Q2, 
shift Imi/S peak away from ~V=O by an amount determined by their difference. We 
interpret this difference as the weight, p, stored by the circuit, and interpret Imid as a 
similarity measure between the circuit's input and stored weight. 

Tunneling and IHEI adapt the bump circuit's weight. The circuit is automaximizing 
because tunneling and IHEI naturally tune the peak of Imid to coincide with the pre
sent input. This high-level behavior coincides with the dynamics of competitive 
learning; both act to decrease the difference between a stored weight and the applied 
input. Therefore, no explicit computation of the direction or magnitude of weight 
updates is necessary-the circuit naturally performs these computations for us. 
Consequently, we only need to indicate when the circuit should adapt, not how it 
does adapt. Applying -IOV to Vlun and -OV to Vinj activates adaptation. Applying 
<8V to Vlun and >2V to Vinj deactivates adaptation. 

3.1 Weight storage 

The bump circuit's weight value derives directly from the charge on its floating
gates. A synapse transistor's floating-gate charge looks, for all practical purposes, 



like a voltage source, V" applied to the control gate. This voltage source has a value 
Vs = QIC i", where Cin is the control-gate to floating-gate coupling capacitance and Q 
is the floating gate charge. We encode the input to the bump circuit, Yin, as a differ
ential signal: VI= Vin /2; and V2 =-Vin/2 (similar results will follow for any symmet
ric encoding of Yin)' As a result, froid computes the similarity between the two float
ing-gate voltages: Vfgl = VsI+ Vin /2, and Vfg2= Vs2 - Vin/2 where VsI and Vs2 are the 
voltages due to the charge stored on the floating gates. We define the bump circuit's 
weight, /1, as: 

(4) 

This weight corresponds to the value of Yin that equalizes the two floating-gate volt
ages (and maximizes froid). Part (b) of Fig. 1 shows the bump circuit's froid output for 
three weight values, as a function of the differential input. We see that different 
stored values change the location of the peak, but do not change the shape of the 
bump. Because floating gate charge is nonvolatile, the weight is also nonvolatile. 

The differential encoding of the input makes the bump circuit's adaptation symmet
ric with respect to (Vin -/1). Without loss of generality, we can represent Yin as: 

(5) 

If we apply Vin!2 and -Vin!2 to the two input terminals, we arrive at the following 
two floating-gate voltages: 

Vfgl = (Vs2 + Vsl + ~n - /1) 1 2 

Vfg2 = (Vs2 + Vsl - ~n + /1) 1 2 

(6) 

(7) 

By reversing the sign of (Vin -/1), we obtain the same floating-gate voltages on the 
opposite terminals. Because the floating gate voltages are independent of the sign of 
(Vin-/1), the bump circuit's learning rule is symmetric with respect to (Vin-/1). 

3.2 Adaptation 

We now explore the bump circuit's adaptation dynamics. We define L1Vfg=Vfgl-Vfg2' 
From Eqs. 4-7, we can see that Vin-/1=L1Vfg . Consequently, the learning rate, dfl/dt, 
is equivalent to -dL1 Vfgldt. In our subsequent derivations, we consider only positive 
L1 Vfg , because adaptation is symmetric (albeit with a change of sign). We show com
plete derivations of the equations in this section in [9]. 

Tunneling causes adaptation by decreasing the difference between the floating-gate 
voltages Vfgl and Vfg2 . Electron tunneling increases the voltage of both floating 
gates, but, because tunneling increases exponentially with smaller floating-gate 
voltages (see Eq.l), tunneling decreases the difference. Assuming that Ml 's floating 
gate voltage is lower than M2's, the change in L1 Vfg due to electron tunneling is: 

d L1 Vfg 1 dt = -(I tunl -ftun2 ) 1 Cfg (8) 

We substitute Eq.1 into Eq.8 and solve for the tunneling learning rule: 

d Id (.1.Vtun-.1.VO)/Vx . h 12 L1Vfg t = -ftOe . sm ((L1Vfg -f/J) Y.) (9) 

where ftO=ftunO/Cfp Vx is a model constant, L1 Vo = (L1 Vfgl + L1 Vfg2 )12, and f/J models the 
tunneling mismatch between synapse transistors. This rule depends on three factors: 
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Figure 2. (a) Measured adaptation rates, due to tunneling and IHEI, along with fits 
from Eqs.9 and 11. (b) Composite adaptation rate, along with a fit from (12). We 
slowed the IHEI adaptation rate (by using a higher Vinj ), compared with the data 
from part (a), to cause better matching between tunneling and IHEI. 

a controllable learning rate, ~ Vtun ; the difference between Yin and f.1, ~ Vrg ; and the 
average floating gate voltage, ~ Yo. 

The circuit also uses IHEI to decrease ~ Vrg . We bias the bump circuit so that only 
transistors Ml and M2 exhibit IHEI. According to Eq.2, IHEI depends linearly on a 
transistor's source current, but exponentially on its source-to-drain voltage. Conse
quently, we decrease ~ Vrg by controlling the drain voltages at Ml and M2. Coupled 
current mirrors (M6-M7 and M8-M9) at the drains of Ml and M2, simultaneously 
raise the drain voltage of the transistor that is sourcing a larger current, and lower 
the drain voltage of the transistor that is sourcing a smaller current. The transistor 
with the smaller source current will experience a larger Vsd, and thus exponentially 
more IHEI, causing its source current to rapidly increase. Diodes (MlO and M11) 
further increase the drain voltage of the transistor with the larger current, further 
reducing its IHEI. The net effect is that IHEI acts to equalize the currents, and, like
wise, the floating gate voltages . Recently Hasler proposed a similar method for 
controlling IHEI in a floating gate differential pair [4]. 

Assuming II >h, the change in ~ Vrg due to IHEI is: 

(10) 

We expand the learning rule by substituting Eq.2 into Eq.lO. To compute values for 
the drain voltages of MI and M2, we assume that all of II flows through MIl and all 
of 12 flows through M7. The IHEI learning rule is given below: 

d/1 Vf g 1 dt = - IjOe9WO (e -rVi"i<l>l (/1 Vfg ) - e ~V;"i <l>2 (/1 Vfg » 

where fjo=finjO/Crg, r=-2heVy, 17=-lIVy, and I;=KlVy. <1>1 and <1>2 are given by: 

(( )/2 h 12 )) l-2U,/KVy -lO~Vfg 
<I> l (~ Vfg ) = f b - f mid cos ( K~ Vfg V t e 

( ) / 2 1 2 )) -(l~Vfg ( -K~Vfg I U, )-u, IVy) 
<l>2(~Vfg) = ( Ib -Imid cosh(clVfg VI e l-e 

(11) 

(12) 

(13) 

where (J =(I-V/Vy)Kl2Vh and w =Kl2Vt-Kl2Vy-llVy. Like tunneling, the IHEI 
rule depends on three factors: a controllable learning rate, Vinj ; the difference be
tween Yin and f.1, ~ Vrg; and ~ Yo. Part (a) of Fig. 2 shows measurements of d~ Vrgldt 
versus ~ Vfg due to tunneling and IHEI, along with fits to Eqs.9 and 11 respectively. 



IHEI and tunneling facilitate adaptation by adding and removing charge from the 
floating gates, respectively. Isolated, any of these mechanisms will eventually drive 
the bump circuit out of its operating range. In order to obtain useful adaptation, we 
need to activate both mechanisms at the same time. There is an added benefit to 
combining tunneling and IHEI: Part (a) Fig 2 shows that tunneling acts more 
strongly for smaller values of ~ Vfg , while IHEI shows the opposite behavior. The 
mechanisms complement each other, providing adaptation over more than a I V range 
in ~ Vrg . We combine Eq. 9 and Eq.11 to derive the bump learning rule: 

(~Vtun -~I'o)/V, . ¢oVo TViol ~viIj 
--d~Vrg / dt =/tOe sinh((~Vrg -¢')/2V~)+IjOe (e CPl(~Vrg)-e CP2(~Vfg)) (14) 

Part (b) of Fig. 2 illustrates the composite weight-update dynamics. When ~ Vfg is 
small, adaptation is primarily driven by IHEI, while tunneling dominates for larger 
values of ~ Vfg • 

The bump learning rule is unlike any learning rule that we have found in the litera
ture. Nevertheless, it exhibits several desirable properties. First, it naturally moves 
the bump circuit's weight towards the present input. Second, the weight update is 
symmetric with respect to the difference between the stored value and the present 
input. Third, we can vary the weight-update rate over many orders of magnitude by 
adjusting Vlun and Vinj • Finally, because the bump circuit uses synapse transistors to 
perform adaptation, the circuit can adapt during normal operation. 

4 Competitive learning with bump circuits 

We summarize the results of simulations of the bump learning rule and also results 
from a competitive learning circuit fabricated in the TSMC 0.35 f.lm process below. 
For further details consult [9]. We first compared the performance of a software 
neural network on a standard clustering task, using the bump learning rule (fitted to 
data from Fig. 2), and a basic competitive learning rule (learning rate p=O.OI): 

djl / dt = p X CVin - jl) (15) 

We trained both networks on data drawn from a mixture of 32 Gaussians, in a 32-
dimensional space. The Gaussian means were drawn from the interval [0,1] and the 
covariance matrix was the diagonal matrix 0.1 *1. On an input presentation, the net
work updated the weight vector of the closest neuron using either the bump learning 
rule, or Eq.15. We measured the performance of the two learning rules by evaluat
ing the coding error of each trained network, on a test set drawn from the same dis
tribution as the training data. The coding error is the sum of the squared distances 
between each test point and its closest neuron. Part (a) of Fig. 3 shows that the 
bump circuit's rule performs favorably with the hard competitive learning rule. 

Our VLSI circuit (Part (b) of Fig. 3) comprised two neurons with a one-dimensional 
input (a neuron was a single bump circuit), and a feedback network to control adap
tation. The feedback network comprised a winner-take-all (WT A) [10] that detected 
which bump was closest to the present input, and additional circuitry [9] that gener
ated Vtun and Vinj from the WT A output. We tested this circuit on a clustering task, 
to learn the centers of a mixture of two Gaussians. In part (c) of Fig. 3, we compare 
the performance of our circuit with a simulated neural network using Eq.15. The 
VLSI circuit performed comparably with the neural network, demonstrating that our 
bump circuit, in conjunction with simple feedback mechanisms, can implement 
competitive learning in VLSI. We can generalize the circuitry to multiple dimen
sions (multiple bump circuits per neuron) and multiple neurons; each neuron only 
requires one Vlun and Vinj signal. 
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Figure 3. (a) Comparison of a neural 
network using the bump learning rule 
versus a standard competitive learning 
rule . We drew the training data from a 
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competitive learning circuit. (c) Per
formance of a competitive learning cir
cuit versus a neural network for learning 
a mixture of two Gaussians. 
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