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Abstract 

The three-dimensional motion of humans is underdetermined when the 
observation is limited to a single camera, due to the inherent 3D ambi
guity of 2D video. We present a system that reconstructs the 3D motion 
of human subjects from single-camera video, relying on prior knowledge 
about human motion, learned from training data, to resolve those am
biguities. After initialization in 2D, the tracking and 3D reconstruction 
is automatic; we show results for several video sequences. The results 
show the power of treating 3D body tracking as an inference problem. 

1 Introduction 

We seek to capture the 3D motions of humans from video sequences. The potential appli
cations are broad, including industrial computer graphics, virtual reality, and improved 
human-computer interaction. Recent research attention has focused on unencumbered 
tracking techniques that don't require attaching markers to the subject's body [4, 5], see 
[12] for a survey. Typically, these methods require simultaneous views from multiple cam
eras. 

Motion capture from a single camera is important for several reasons. First, though under
determined, it is a problem people can solve easily, as anyone viewing a dancer in a movie 
can confirm. Single camera shots are the most convenient to obtain, and, of course, apply 
to the world's film and video archives. It is an appealing computer vision problem that 
emphasizes inference as much as measurement. 

This problem has received less attention than motion capture from multiple cameras. 
Goncalves et.al. rely on perspective effects to track only a single arm, and thus need not 
deal with complicated models, shadows, or self-occlusion [7]. Bregler & Malik develop a 
body tracking system that may apply to a single camera, but performance in that domain is 
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not clear; most of the examples use multiple cameras [4]. Wachter & Nagel use an iterated 
extended Kalman filter, although their body model is limited in degrees of freedom [12l 
Brand [3] uses an learning-based approach, although with representational expressiveness 
restricted by the number of HMM states. An earlier version of the work reported here [10] 
required manual intervention for the 2D tracking. 

This paper presents our system for single-camera motion capture, a learning-based ap
proach, relying on prior information learned from a labeled training set. The system tracks 
joints and body parts as they move in the 2D video, then combines the tracking informa
tion with the prior model of human motion to form a best estimate of the body's motion in 
3D. Our reconstruction method can work with incomplete information, because the prior 
model allows spurious and distracting information to be discarded . The 3D estimate pro
vides feedback to influence the 2D tracking process to favor more likely poses. 

The 2D tracking and 3D reconstruction modules are discussed in Sections 3 and 4, respec
tively. Section 4 describes the system operation and presents performance results. Finally, 
Section 5 concludes with possible improvements. 

2 2D Tracking 

The 2D tracker processes a video stream to determine the motion of body parts in the image 
plane over time. The tracking algorithm used is based on one presented by Ju et. al. [9], 
and performs a task similar to one described by Morris & Rehg [11]. Fourteen body parts 
are modeled as planar patches, whose positions are controlled by 34 parameters. Tracking 
consists of optimizing the parameter values in each frame so as to minimize the mismatch 
between the image data and a projection of the body part maps. The 2D parameter values 
for the first frame must be initialized by hand, by overlaying a model onto the 2D image of 
the first frame. 

We extend Ju et. al.'s tracking algorithm in several ways. We track the entire body, and 
build a model of each body part that is a weighted average of several preceding frames, not 
just the most recent one. This helps eliminate tracking errors due to momentary glitches 
that last for a frame or two. 

We account for self-occlusions through the use of support maps [4, 1]. It is essential to 
address this problem, as limbs and other body parts will often partly or wholly obscure one 
another. For the single-camera case, there are no alternate views to be relied upon when a 
body part cannot be seen. 

The 2D tracker returns the coordinates of each limb in each successive frame. These in tum 
yield the positions of joints and other control points needed to perform 3D reconstruction. 

3 3D Reconstruction 

3D reconstruction from 2D tracking data is underdetermined. At each frame, the algorithm 
receives the positions in two dimensions of 20 tracked body points, and must to infer the 
correct depth of each point. We rely on a training set of 3D human motions to determine 
which reconstructions are plausible. Most candidate projections are unnatural motions, 
if not anatomically impossible, and can be eliminated on this basis. We adopt a Bayesian 
framework, and use the training data to compute prior probabilities of different 3D motions. 

We model plausible motions as a mixture of Gaussian probabilities in a high-dimensional 
space. Motion capture data gathered in a professional studio provide the training data: 
frame-by-frame 3D coordinates for 20 tracked body points at 20-30 frames per second. We 
want to model the probabilities of human motions of some short duration, long enough be 
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informative, but short enough to characterize probabilistically from our training data. We 
assembled the data into short motion elements we caJled snippets of 11 successive frames, 
about a third of a second. We represent each snippet from the training data as a large 
column vector of the 3D positions of each tracked body point in each frame of the snippet. 

We then use those data to build a mixture-of-Gaussians probability density model [2]. For 
computational efficiency, we used a clustering approach to approximate the fitting of an EM 
algorithm. We use k-means clustering to divide the snippets into m groups, each of which 
will be modeled by a Gaussian probability cloud. For each cluster, the matrix M j is formed, 
where the columns of M j are the nj individual motion snippets after subtracting the mean 
J.l j. The singular value decomposition (SVD) gives M j = Uj Sj VI, where Sj contains 
the singular values along the diagonal, and Uj contains the basis vectors. (We truncate 
the SVD to include only the 50 largest singular values.) The cluster can be modeled by 
a multidimensional Gaussian with covariance Aj = ;j UjSJUJ. The prior probability 
of a snippet x over all the models is a sum of the Gaussian probabilities weighted by the 
probability of each model. 

m 

P(x) = Lk7fje- !(x-llj)TA- 1 (X-llj) (1) 
j=1 

Here k is a normalization constant, and 7f j is the a priori probability of model j, computed 
as the fraction of snippets in the knowledge base that were originally placed in cluster j . 
Given this approximately derived mixture-of-factors model [6], we can compute the prior 
probability of any snippet. 

To estimate the data term (likelihood) in Bayes' law, we assume that the 2D observations 
include some Gaussian noise with variance (T. Combined with the prior, the expression for 
the probability of a given snippet x given an observation ybecomes 

p(x,e,s,vly) = k' (e-IIY-R6 , •. v(XlII 2/(2tr2)) (f k7fj e-!(X-llj)T A _l(X-llj)) (2) 

J=l 

In this equation, Rn,s,ii(X) is a rendering function which maps a 3D snippet x into the image 
coordinate system, performing scaling s, rotation about the vertical axis e, and image-plane 
translation v. We use the EM algorithm to find the probabilities of each Gaussian in the 
mixture and the corresponding snippet x that maximizes the probability given the observa
tions [6]. This allows the conversion of eleven frames of 2D tracking measurements into 
the most probable corresponding 3D snippet. In cases where the 2D tracking is poor, the 
reconstruction may be improved by matching only the more reliable points in the likelihood 
term of Equation 2. This adds a second noise process to explain the outlier data points in 
the likelihood term. 

To perform the full 3D reconstruction, the system first divides the 2D tracking data into 
snippets, which provides the y values of Eq. 2, then finds the best (MAP) 3D snippet 
for each of the 2D observations. The 3D snippets are stitched together, using a weighted 
interpolation for frames where two snippets overlap. The result is a Bayesian estimate of 
the subject's motion in three dimensions. 

4 Performance 

The system as a whole will track and successfully 3D reconstruct simple, short video clips 
with no human intervention, apart from 2D pose initialization. It is not currently reliable 
enough to track difficult footage for significant lengths of time. However, analysis of short 
clips demonstrates that the system can successfully reconstruct 3D motion from ambiguous 
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2D video. We evaluate the two stages of the algorithm independently at first, and then 
consider their operation as a system. 

4.1 Performance of the 3D reconstruction 

The 3D reconstruction stage is the heart of the system. To our knowledge, no similar 
2D to 3D reconstruction technique relying on prior infonnation has been published. ([3], 
developed simultaneously, also uses an inference-based approach). Our tests show that the 
module can restore deleted depth infonnation that looks realistic and is close to the ground 
truth, at least when the knowledge base contains some examples of similar motions. This 
makes the 3D reconstruction stage itself an important result, which can easily be applied in 
conjunction with other tracking technologies. 

To test the reconstruction with known ground truth, we held back some of the training 
data for testing. We artificially provided perfect 2D marker position data, yin Eq. 2, and 
tested the 3D reconstruction stage in isolation. After removing depth information from the 
test sequence, the sequence is reconstructed as if it had come from the 2D tracker. Se
quences produced in this manner look very much like the original. They show some rigid 
motion error along the line of sight. An analysis of the uncertainty in the posterior prob
ability predicts high uncertainty for the body motion mode of rigid motion parallel to the 
orthographic projection [10]. This slipping can be corrected by enforcing ground-contact 
constraints. Figure 1 shows a reconstructed running sequence corrected for rigid motion 
error and superimposed on the original. The missing depth information is reconstructed 
well, although it sometimes lags or anticipates the true motion slightly. Quantitatively, this 
error is a relatively small effect. After subtracting rigid motion error, the mean residual 
3D errors in limb position are the same order of magnitude as the small frame-to frame 
changes in those positions. 

~' - " -, . _. ~ .~ ..• 

Figure 1: Original and reconstructed running sequences superimposed (frames 1, 7, 14, 
and 21). 

4.2 Performance of the 2D tracker 

The 2D tracker performs well under constant illumination, providing quite accurate results 
from frame to frame. The main problem it faces is the slow accumulation of error. On 
longer sequences, the errors can build up to the point where the module is no longer tracking 
the body parts it was intended to track. The problem is worsened by low contrast, occlusion 
and lighting changes. More careful body modeling [5], lighting models, and modeling of 
the background may address these issues. The sequences we used for testing were several 
seconds long and had fairly good contrast. Although adequate to demonstrate the operation 
of our system, the 2D tracker contains the most open research issues. 

4.3 Overall system performance 

Three example reconstructions are given, showing a range of different tracking situations. 
The first is a reconstruction of a stationary figure waving one arm, with most of the motion 
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in the image plane. The second shows a figure bringing both arms together towards the 
camera, resulting in a significant amount of foreshortening. The third is a reconstruction of 
a figure walking sideways, and includes significant self-occlusion 

Figure 2: First clip and its reconstruction (frames 1, 2S, SO, and 7S). 

The first video is the easiest to track because there is little or no occlusion and change in 
lighting. The reconstruction is good, capturing the stance and motion of the arm. There 
is some rigid motion error, which is corrected through ground friction constraints. The 
knees are slightly bent; this may be because the subject in the video has different body 
proportions than those represented in the training database. 

Figure 3: Second clip and its reconstruction (frames 1, 2S, SO, and 7S). 

The second video shows a figure bringing its arms together towards the camera. The only 
indication of this is in the foreshortening of the limbs, yet the 3D reconstruction correctly 
captures this in the right arm. (Lighting changes and contrast problems cause the 2D tracker 
to lose the left arm partway through, confusing the reconstruction of that limb, but the right 
arm is tracked accurately throughout.) 

The third video shows a figure walking to the right in the image plane. This clip is the 
hardest for the 2D tracker, due to repeated and prolonged occlusion of some body parts. 
The tracker loses the left arm after IS frames due to severe occlusion, yet the remaining 
tracking information is still sufficient to perform an adequate reconstruction. At about 
frame 4S, the left leg has crossed behind the right several times and is lost, at which point 
the reconstruction quality begins to degrade. The key to a more reliable reconstruction on 
this sequence is better tracking. 
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Figure 4: Third clip and its reconstruction (frames 6, 16, 26, and 36). 

5 Conclusion 

We have demonstrated a system that tracks human figures in short video sequences and 
reconstructs their motion in three dimensions. The tracking is unassisted, although 2D pose 
initialization is required. The system uses prior information learned from training data to 
resolve the inherent ambiguity in going from two to three dimensions, an essential step 
when working with a single-camera video source. To achieve this end, the system relies 
on prior knowledge, extracted from examples of human motion. Such a learning-based 
approach could be combined with more sophisticated measurement-based approaches to 
the tracking problem [12, 8, 4]. 
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