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Abstract 
By thinking of each state in a hidden Markov model as corresponding to some 
spatial region of a fictitious topology space it is possible to naturally define neigh­
bouring states as those which are connected in that space. The transition matrix 
can then be constrained to allow transitions only between neighbours; this means 
that all valid state sequences correspond to connected paths in the topology space. 
I show how such constrained HMMs can learn to discover underlying structure 
in complex sequences of high dimensional data, and apply them to the problem 
of recovering mouth movements from acoustics in continuous speech. 

1 Latent variable models for structured sequence data 
Structured time-series are generated by systems whose underlying state variables change in 
a continuous way but whose state to output mappings are highly nonlinear, many to one and 
not smooth. Probabilistic unsupervised learning for such sequences requires models with 
two essential features: latent (hidden) variables and topology in those variables. Hidden 
Markov models (HMMs) can be thought of as dynamic generalizations of discrete state 
static data models such as Gaussian mixtures, or as discrete state versions of linear dynam­
ical systems (LDSs) (which are themselves dynamic generalizations of continuous latent 
variable models such as factor analysis). While both HMMs and LDSs provide probabilistic 
latent variable models for time-series, both have important limitations. Traditional HMMs 
have a very powerful model of the relationship between the underlying state and the associ­
ated observations because each state stores a private distribution over the output variables. 
This means that any change in the hidden state can cause arbitrarily complex changes in the 
output distribution. However, it is extremely difficult to capture reasonable dynamics on 
the discrete latent variable because in principle any state is reachable from any other state at 
any time step and the next state depends only on the current state. LDSs, on the other hand, 
have an extremely impoverished representation of the outputs as a function of the latent 
variables since this transformation is restricted to be global and linear. But it is somewhat 
easier to capture state dynamics since the state is a multidimensional vector of continuous 
variables on which a matrix "flow" is acting; this enforces some continuity of the latent 
variables across time. Constrained hidden Markov models address the modeling of state 
dynamics by building some topology into the hidden state representation. The essential 
idea is to constrain the transition parameters of a conventional HMM so that the discrete­
valued hidden state evolves in a structured way.l In particular, below I consider parameter 
restrictions which constrain the state to evolve as a discretized version of a continuous 
multivariate variable, i.e. so that it inscribes only connected paths in some space. This 
lends a physical interpretation to the discrete state trajectories in an HMM. 

I A standard trick in traditional speech applications of HMMs is to use "left-to-right" transition 
matrices which are a special case of the type of constraints investigated in this paper. However, left­
to-right (Bakis) HMMs force state trajectories that are inherently one-dimensional and uni-directional 
whereas here I also consider higher dimensional topology and free omni-directional motion. 
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2 An illustrative game 
Consider playing the following game: divide a sheet of paper into several contiguous, non­
overlapping regions which between them cover it entirely. In each region inscribe a symbol, 
allowing symbols to be repeated in different regions. Place a pencil on the sheet and move it 
around, reading out (in order) the symbols in the regions through which it passes. Add some 
noise to the observation process so that some fraction of the time incorrect symbols are 
reported in the list instead of the correct ones. The game is to reconstruct the configuration 
of regions on the sheet from only such an ordered list(s) of noisy symbols. Of course, the 
absolute scale, rotation and reflection of the sheet can never be recovered, but learning the 
essential topology may be possible.2 Figure 1 illustrates this setup. 
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Figure 1: (left) True map which generates symbol sequences by random movement between con­
nected cells. (centre) An example noisy output sequence with noisy symbols circled. (right) Learned 
map after training on 3 sequences (with 15% noise probability) each 200 symbols long. Each cell 
actually contains an entire distribution over all observed symbols, though in this case only the upper 
right cell has significant probability mass on more than one symbol (see figure 3 for display details) . 

Without noise or repeated symbols, the game is easy (non-probabilistic methods can solve 
it) but in their presence it is not. One way of mitigating the noise problem is to do statistical 
averaging. For example, one could attempt to use the average separation in time of each 
pair of symbols to define a dissimilarity between them. It then would be possible to use 
methods like multi-dimensional scaling or a sort of Kohonen mapping though time3 to ex­
plicitly construct a configuration of points obeying those distance relations. However, such 
methods still cannot deal with many-to-one state to output mappings (repeated numbers in 
the sheet) because by their nature they assign a unique spatial location to each symbol. 

Playing this game is analogous to doing unsupervised learning on structured sequences. 
(The game can also be played with continuous outputs, although often high-dimensional 
data can be effectively clustered around a manageable number of prototypes; thus a vector 
time-series can be converted into a sequence of symbols.) Constrained HMMs incorporate 
latent variables with topology yet retain powerful nonlinear output mappings and can deal 
with the difficulties of noise and many-to-one mappings mentioned above; so they can 
"win" our game (see figs. 1 & 3). The key insight is that the game generates sequences ex­
actly according to a hidden Markov process whose transition matrix allows only transitions 
between neighbouring cells and whose output distributions have most of their probability 
on a single symbol with a small amount on all other symbols to account for noise. 

2The observed symbol sequence must be "informative enough" to reveal the map structure (this 
can be quantified using the idea of persistent excitation from control theory) . 

3Consider a network of units which compete to explain input data points. Each unit has a position 
in the output space as well as a position in a lower dimensional topology space. The winning unit has 
its position in output space updated towards the data point; but also the recent (in time) winners have 
their positions in topology space updated towards the topology space location of the current winner. 
Such a rule works well, and yields topological maps in which nearby units code for data that typically 
occur close together in time. However it cannot learn many-to-one maps in which more than one unit 
at different topology locations have the same (or very similar) outputs. 
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3 Model definition: state topologies from cell packings 
Defining a constrained HMM involves identifying each state of the underlying (hidden) 
Markov chain with a spatial cell in a fictitious topology space. This requires selecting 
a dimensionality d for the topology space and choosing a packing (such as hexagonal or 
cubic) which fills the space. The number of cells in the packing is equal to the number of 
states M in the original Markov model. Cells are taken to be all of equal size and (since 
the scale of the topology space is completely arbitrary) of unit volume. Thus, the packing 
covers a volume M in topology space with a side length l of roughly l = MIld. The 
dimensionality and packing together define a vector-valued function x(m), m = 1 ... M 
which gives the location of cell m in the packing. (For example, a cubic packing of d 
dimensional space defines x(m+l) to be [m, mil, mll2, ... ,mild-I] mod l.) State m 
in the Markov model is assigned to to cell m in the packing, thus giving it a location x( m) 
in the topology space. Finally, we must choose a neighbourhood rule in the topology space 
which defines the neighbours of cell m; for example, all "connected" cells, all face neigh­
bours, or all those within a certain radius. (For cubic packings, there are 3d -1 connected 
neighbours and 2d face neighbours in a d dimensional topology space.) The neighbourhood 
rule also defines the boundary conditions of the space - e.g. periodic boundary conditions 
would make cells on opposite extreme faces of the space neighbours with each other. 

The transition matrix of the HMM is now preprogrammed to only allow transitions between 
neighbours. All other transition probabilities are set to zero, making the transition matrix 
very sparse. (I have set all permitted transitions to be equally likely.) Now, all valid 
state sequences in the underlying Markov model represent connected ( "city block") paths 
through the topology space. Figure 2 illustrates this for a three-dimensional model. 
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4 State inference and learning 

Figure 2: (left) PhYSical depiction of the 
topology space for a constrained HMM with 
d=3,l=4 and M =64 showing an example state 
trajectory. (right) Corresponding transition 
matrix structure for the 64-state HMM com­
puted using face-centred cubic packing. The 
gaps in the inner bands are due to edge effects. 

The constrained HMM has exactly the same inference procedures as a regular HMM: the 
forward-backward algorithm for computing state occupation probabilities and the Viterbi 
decoder for finding the single best state sequence. Once these discrete state inferences have 
been performed, they can be transformed using the state position function x( m) to yield 
probability distributions over the topology space (in the case offorward-backward) or paths 
through the topology space (in the case of Viterbi decoding). This transformation makes 
the outputs of state decodings in constrained HMMs comparable to the outputs of inference 
procedures for continuous state dynamical systems such as Kalman smoothing. 

The learning procedure for constrained HMMs is also almost identical to that for HMMs. 
In particular, the EM algorithm (Baum-Welch) is used to update model parameters. The 
crucial difference is that the transition probabilities which are precomputed by the topology 
and packing are never updated during learning. In fact, this makes learning much easier 
in some cases. Not only do the transition probabilities not have to be learned, but their 
structure constrains the hidden state sequences in such a way as to make the learning of the 
output parameters much more efficient when the underlying data really does come from a 
spatially structured generative model. Figure 3 shows an example of parameter learning 
for the game discussed above. Notice that in this case, each part of state space had only a 
single output (except for noise) so the final learned output distributions became essentially 
minimum entropy. But constrained HMMs can in principle model stochastic or multimodal 
output processes since each state stores an entire private distribution over outputs. 
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Figure 3: Snapshots of model parameters during constrained HMM learning for the game described 
in section 2. At every iteration each cell in the map has a complete distribution over all of the observed 
symbols. Only the top three symbols of each cell's histogram are show, with/ont size proportional 
to the square root o/probability (to make ink roughly proportional). The map was trained on 3 noisy 
sequences each 200 symbols long generated from the map on the left of figure 1 using 15% noise 
probability. The final map after convergence (30 iterations) is shown on the right of figure l. 

5 Recovery of mouth movements from speech audio 
I have applied the constrained HMM approach described above to the problem of recover­
ing mouth movements from the acoustic waveform in human speech. Data containing si­
multaneous audio and articulator movement information was obtained from the University 
of Wisconsin X-ray microbeam database [9]. Eight separate points (four on the tongue, one 
on each lip and two on the jaw) located in the midsaggital plane of the speaker's head were 
tracked while subjects read various words, sentences, paragraphs and lists of numbers. The 
x and y coordinates (to within about ± Imm) of each point were sampled at 146Hz by an X­
ray system which located gold beads attached to the feature points on the mouth, producing 
a 16-dimensional vector every 6.9ms. The audio was sampled at 22kHz with roughly 14 
bits of amplitude resolution but in the presence of machine noise. 

These data are well suited to the constrained HMM architecture. They come from a system 
whose state variables are known, because of physical constraints, to move in connected 
paths in a low degree-of-freedom space. In other words the (normally hidden) articulators 
(movable structures of the mouth), whose positions represent the underlying state of the 
speech production system,4 move slowly and smoothly. The observed speech signal-the 
system's output--can be characterized by a sequence of short-time spectral feature vectors, 
often known as a spectrogram. In the experiments reported here, I have characterized the 
audio signal using 12 line spectral frequencies (LSFs) measured every 6.9ms (to coincide 
with the articulatory sampling rate) over a 25ms window. These LSF vectors character­
ize only the spectral shape of the speech waveform over a short time but not its energy. 
Average energy (also over a 25ms window every 6.9ms) was measured as a separate one 
dimensional signal. Unlike the movements of the articulators, the audio spectrum/energy 
can exhibit quite abrupt changes, indicating that the mapping between articulator positions 
and spectral shape is not smooth. Furthermore, the mapping is many to one: different 
articulator configurations can produce very similar spectra (see below). 

The unsupervised learning task, then, is to explain the complicated sequences of observed 
spectral features (LSFs) and energies as the outputs of a system with a low-dimensional 
state vector that changes slowly and smoothly. In other words, can we learn the parameters5 

of a constrained HMM such that connected paths through the topology space (state space) 
generate the acoustic training data with high likelihood? Once this unsupervised learning 
task has been performed, we can (as I show below) relate the learned trajectories in the 
topology space to the true (measured) articulator movements. 

4 Articulator positions do not provide complete state information. For example, the excitation 
signal (voiced or unvoiced) is not captured by the bead locations. They do, however, provide much 
important information; other state information is easily accessible directly from acoustics. 

5Model structure (dimensionality and number of states) is currently set using cross validation. 
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While many models of the speech production process predict the many-to-one and non­
smooth properties of the articulatory to acoustic mapping, it is useful to confirm these 
features by looking at real data. Figure 4 shows the experimentally observed distribution 
of articulator configurations used to produce similar sounds. It was computed as follows. 
All the acoustic and articulatory data for a single speaker are collected together. Starting 
with some sample called the key sample, I find the 1000 samples "nearest" to this key 
by two measures: articulatory distance, defined using the Mahalanobis norm between two 
position vectors under the global covariance of all positions for the appropriate speaker, 
and spectral shape distance, again defined using the Mahalanobis norm but now between 
two line spectral frequency vectors using the global LSF covariance of the speaker's audio 
data. In other words, I find the 1000 samples that "look most like" the key sample in mouth 
shape and that "sound most like" the key sample in spectral shape. I then plot the tongue 
bead positions of the key sample (as a thick cross), and the 1000 nearest samples by mouth 
shape (as a thick ellipse) and spectral shape (as dots). The points of primary interest are the 
dots; they show the distribution of tongue positions used to generate very similar sounds. 
(The thick ellipses are shown only as a control to ensure that many nearby points to the key 
sample do exist in the dataset.) Spread or multimodality in the dots indicates that many 
different articulatory configurations are used to generate the same sound. 
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Figure 4: Inverse mapping from acoustics to articulation is ill-posed in real speech production data. 
Each group of four articulator-space plots shows the 1000 samples which are "nearest" to one key 
sample (thick cross). The dots are the 1000 nearest samples using an acoustic measure based on line 
spectral frequencies. Spread or multimodality in the dots indicates that many different articulatory 
configurations are used to generate very similar sounds. Only the positions of the four tongue beads 
have been plotted. 1\vo examples (with different key samples) are shown, one in the left group of four 
panels and another in the right group. The thick ellipses (shown as a control) are the two-standard 
deviation contour of the 1000 nearest samples using an articulatory position distance metric. 

Why not do direct supervised learning from short-time spectral features (LSFs) to the artic­
ulator positions? The ill-posed nature of the inverse problem as shown in figure 4 makes this 
impossible. To illustrate this difficulty, I have attempted to recover the articulator positions 
from the acoustic feature vectors using Kalman smoothing on a LDS. In this case, since we 
have access to both the hidden states (articulator positions) and the system outputs (LSFs) 
we can compute the optimal parameters of the model directly. (In particular, the state 
transition matrix is obtained by regression from articulator positions and velocities at time 
t onto positions at time t + 1; the output matrix by regression from articulator positions 
and velocities onto LSF vectors; and the noise covariances from the residuals of these 
regressions.) Figure 5b shows the results of such smoothing; the recovery is quite poor. 

Constrained HMMs can be applied to this recovery problem, as previously reported [6]. 
(My earlier results used a small subset of the same database that was not continuous speech 
and did not provide the hard experimental verification (fig. 4) of the many-to-one problem.) 
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Figure 5: (A) Recovered articulator movements using state inference on a constrained HMM. A 
four-dimensional model with 4096 states was trained on data (all beads) from a single speaker but 
not including the test utterance shown. Dots show the actual measured articulator movements for a 
single bead coordinate versus time; the thin lines are estimated movements from the corresponding 
acoustics. (B) Unsuccessful recovery of articulator movements using Kalman smoothing on a global 
LDS model. All the (speaker-dependent) parameters of the underlying linear dynamical system are 
known; they have been set to their optimal values using the true movement information from the 
training data. Furthermore, for this example, the test utterance shown was included in the training 
data used to estimate model parameters. (C) All 16 bead coordinates; all vertical axes are the same 
scale. Bead names are shown on the left. Horizontal movements are plotted in the left-hand column 
and vertical movements in the right-hand column, The separation between the two horizontal lines 
near the centre of the right panel indicates the machine measurement error. 
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The basic idea is to train (unsupervised) on sequences of acoustic-spectral features and 
then map the topology space state trajectories onto the measured articulatory movements. 
Figure 5 shows movement recovery using state inference in a four-dimensional model with 
4096 states (d=4,£=8,M =4096) trained on data (all beads) from a single speaker. (Naive 
unsupervised learning runs into severe local minima problems. To avoid these, in the sim­
ulations shown above, models were trained by slowly annealing two learning parameters6 : 

a term f.!3 was used in place of the zeros in the sparse transition matrix, and If was used 
in place of It = p(mtlobservations) during inference of state occupation probabilities. 
Inverse temperature (3 was raised from 0 to 1.) To infer a continuous state trajectory from 
an utterance after learning, I first do Viterbi decoding on the acoustics to generate a discrete 
state sequence mt and then interpolate smoothly between the positions x(mt) of each state. 

6 An easier way (which I have used previously) to find good minima is to initialize the models 
using the articulatory data themselves. This does not provide as impressive "structure discovery" as 
annealing but still yields a system capable of inverting acoustics into articulatory movements on pre­
viously unseen test data. First, a constrained HMM is trained onjust the articulatory movements; this 
works easily because of the natural geometric (physical) constraints. Next, I take the distribution of 
acoustic features (LSFs) over all times (in the training data) when Viterbi decoding places the model 
in a particular state and use those LSF distributions to initialize an equivalent acoustic constrained 
HMM. This new model is then retrained until convergence using Baum-Welch. 
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After unsupervised learning, a single linear fit is performed between these continuous state 
trajectories and actual articulator movements on the training data. (The model cannot dis­
cover the units system or axes used to represent the articulatory data.) To recover articulator 
movements from a previously unseen test utterance, I infer a continuous state trajectory as 
above and then apply the single linear mapping (learned only once from the training data). 

6 Conclusions, extensions and other work 
By enforcing a simple constraint on the transition parameters of a standard HMM, a link 
can be forged between discrete state dynamics and the motion of a real-valued state vector 
in a continuous space. For complex time-series generated by systems whose underlying 
latent variables do in fact change slowly and smoothly, such constrained HMMs provide a 
powerful unsupervised learning paradigm. They can model state to output mappings that 
are highly nonlinear, many to one and not smooth. Furthermore, they rely only on well 
understood learning and inference procedures that come with convergence guarantees. 

Results on synthetic and real data show that these models can successfully capture the low­
dimensional structure present in complex vector time-series. In particular, I have shown 
that a speaker dependent constrained HMM can accurately recover articulator movements 
from continuous speech to within the measurement error of the data. This acoustic to 
articulatory inversion problem has a long history in speech processing (see e.g. [7] and 
references therein). Many previous approaches have attempted to exploit the smoothness 
of articulatory movements for inversion or modeling: Hogden et.al (e.g. [4]) provided early 
inspiration for my ideas, but do not address the many-to-one problem; Simon Blackburn [1] 
has investigated a forward mapping from articulation to acoustics but does not explicitly 
attempt inversion; early work at Waterloo [5] suggested similar constraints for improving 
speech recognition systems but did look at real articulatory data, more recent work at 
Rutgers [2] developed a very similar system much further with good success. Perpinan [3], 
considers a related problem in sequence learning using EPG speech data as an example. 

While in this note I have described only "diffusion" type dynamics (transitions to all neigh­
bours are equally likely) it is also possible to consider directed flows which give certain 
neighbours of a state lower (or zero) probability. The left-to-right HMMs mentioned earlier 
are an example of this for one-dimensional topologies. For higher dimensions, flows can 
be derived from discretization of matrix (linear) dynamics or from other physical/structural 
constraints. It is also possible to have many connected local flow regimes (either diffusive 
or directed) rather than one global regime as discussed above; this gives rise to mixtures of 
constrained HMMs which have block-structured rather than banded transition matrices. 
Smyth [8] has considered such models in the case of one-dimensional topologies and 
directed flows; I have applied these to learning character sequences from English text. 
Another application I have investigated is map learning from mUltiple sensor readings. 
An explorer (robot) navigates in an unknown environment and records at each time many 
local measurements such as altitude, pressure, temperature, humidity, etc. We wish to 
reconstruct from only these sequences of readings the topographic maps (in each sensor 
variable) of the area as well as the trajectory of the explorer. A final application is tracking 
(inferring movements) of articulated bodies using video measurements of feature positions. 
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