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Abstract 

We introduce two new techniques for density estimation. Our ap­
proach poses the problem as a supervised learning task which can 
be performed using Neural Networks. We introduce a stochas­
tic method for learning the cumulative distribution and an analo­
gous deterministic technique. We demonstrate convergence of our 
methods both theoretically and experimentally, and provide com­
parisons with the Parzen estimate. Our theoretical results demon­
strate better convergence properties than the Parzen estimate. 

1 Introduction and Background 

A majority of problems in science and engineering have to be modeled in a prob­
abilistic manner. Even if the underlying phenomena are inherently deterministic, 
the complexity of these phenomena often makes a probabilistic formulation the only 
feasible approach from the computational point of view. Although quantities such 
as the mean, the variance, and possibly higher order moments of a random variable 
have often been sufficient to characterize a particular problem, the quest for higher 
modeling accuracy, and for more realistic assumptions drives us towards modeling 
the available random variables using their probability density. This of course leads 
us to the problem of density estimation (see [6]). 

The most common approach for density estimation is the nonparametric approach, 
where the density is determined according to a formula involving the data points 
available. The most common non parametric methods are the kernel density esti­
mator, also known as the Parzen window estimator [4] and the k-nearest neighbor 
technique [1]. Non parametric density estimation belongs to the class of ill-posed 
problems in the sense that small changes in the data can lead to large changes in 
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the estimated density. Therefore it is important to have methods that are robust to 
slight changes in the data. For this reason some amount of regularization is needed 
[7]. This regularization is embedded in the choice of the smoothing parameter (ker­
nel width or k). The problem with these non-parametric techniques is their extreme 
sensitivity to the choice of the smoothing parameter. A wrong choice can lead to 
either undersmoothing or oversmoothing. 

In spite of the importance of the density estimation problem, proposed methods 
using neural networks have been very sporadic. We propose two new methods 
for density estimation which can be implemented using multilayer networks. In 
addition to being able to approximate any function to any given precision, multilayer 
networks give us the flexibility to choose an error function to suit our application. 
The methods developed here are based on approximating the distribution function, 
in contrast to most previous works which focus on approximating the density itself. 
Straightforward differentiation gives us the estimate of the density function. The 
distribution function is often useful in its own right - one can directly evaluate 
quantiles or the probability that the random variable occurs in a particular interval. 

One of the techniques is a stochastic algorithm (SLC), and the second is a determin­
istic technique based on learning the cumulative (SIC). The stochastic technique 
will generally be smoother on smaller numbers of data points, however, the de­
terministic technique is faster and applies to more that one dimension. We will 
present a result on the consistency and the convergence rate of the estimation error 
for our methods in the univariate case. When the unknown density is bounded 
and has bounded derivatives up to order K, we find that the estimation error is 
O((loglog(N)/N)-(l-t»), where N is the number of data points. As a comparison, 
for the kernel density estimator (with non-negative kernels), the estimation error is 
O(N-4 / 5 }, under the assumptions that the unknown density has a square integrable 
second derivative (see [6]), and that the optimal kernel width is used, which is not 
possible in practice because computing the optimal kernel width requires knowledge 
of the true density. One can see that for smooth density functions with bounded 
derivatives, our methods achieve an error rate that approaches O(N-1 ). 

2 New Density Estimation Techniques 

To illustrate our methods, we will use neural networks, but stress that any suf­
ficiently general learning model will do just as well. The network's output will 
represent an estimate of the distribution function, and its derivative will be an 
estimate of the density. We will now proceed to a description of the two methods. 

2.1 SLC (Stochastic Learning of the Cumulative) 

Let Xn E R, n = 1, ... , N be the data points. Let the underlying density be g(x) 
and its distribution function G(x) = J~oog(t)dt. Let the neural network output be 
H (x, w), where w represents the set of weights of the network. Ideally, after training 
the neural network, we would like to have H (x, w) = G (x). It can easily be shown 
that the density of the random variable G(x) (x being generated according to g(x)) 
is uniform in [0,1]. Thus, if H(x,w) is to be as close as possible to G(x), then 
the network output should have a density that is close to uniform in [0,1]. This is 
what our goal will be. We will attempt to train the network such that its output 
density is uniform, then the network mapping should represent the distribution 
function G(x). The basic idea behind the proposed algorithm is to use the N data 
points as inputs to the network. For every training cycle, we generate a different 
set of N network targets randomly from a uniform distribution in [0, 1], and adjust 
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the weights to map the data points (sorted in ascending order) to these generated 
targets (also sorted in ascending order). Thus we are training the network to map 
the data to a uniform distribution. 

Before describing the steps of the algorithm, we note that the resulting network has 
to represent a monotonically non decreasing mapping, otherwise it will not represent 
a legitimate distribution function. In our simulations, we used a hint penalty to 
enforce monotonicity [5]. The algorithm is as follows. 

1. Let Xl S X2 S ... S XN be the data points. Set t = 1, where t is the 
training cycle number. Initialize the weights (usually randomly) to w(l). 

2. Generate randomly from a uniform distribution in [0,1] N points (and sort 
them): UI S U2 S '" S UN· The point Un is the target output for X n· 

3. Adjust the network weights according to the backpropagation scheme: 
a£ 

w(t + 1) = w(t) - 17(t) aw (1) 

where £ is the objective function that includes the error term and the 
monotonicity hint penalty term [5]: 

N 2 Nh 2 

£ = I: [H(xn)-Un] +AI:8(H(Yk)-H(Yk+~)) [H(Yk)-H(Yk+~)] 
n=l k=l 

(2) 
where we have suppressed the w dependence. The second term is the mono­
tonicity penalty term, A is a positive weighting constant, ~ is a small pos­
itive number, 8(x) is the familiar unit step function, and the Yk'S are any 
set of points where we wish to enforce the monotonicity. 

4. Set t = t + 1, and go to step 2. Repeat until the error is small enough. 
Upon convergence, the density estimate is the derivative of H. 

Note that as presented, the randomly generated targets are different for every cycle, 
which will have a smoothing effect that will allow convergence to a truly uniform 
distribution. One other version, that we have implemented in our simulation stud­
ies, is to generate new targets after every fixed number L of cycles, rather than 
every cycle. This will generally improve the speed of convergence as there is more 
"continuity" in the learning process. Also note that it is preferable to choose the 
activation function for the output node to be in the range of 0 to 1, to ensure that 
the estimate of the distribution function is in this range . 

SLC is only applicable to estimating univariate densities, because, for the multivari­
ate case, the nonlinear mapping Y = G (x) will not necessarily result in a uniformly 
distributed output y. Fortunately, many, if not the majority of problems encoun­
tered in practice are univariate. This is because multivariate problems, with even 
a modest number of dimensions, need a huge amount of data to obtain statistically 
accurate results. The next method, is applicable to the multivariate case as well. 

2.2 SIC (Smooth Interpolation of the Cumulative) 

Again, we have a multilayer network, to which we input the point x, and the 
network outputs the estimate of the distribution function. Let g(x) be the true 
density function, and let G(x) be the corresponding distribution function. Let 
x = (Xl, ... , xd)T. The distribution function is given by 

xl x d 

G(x) = 100'" 100 g(x)dx1 ... xd, (3) 
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a straightforward estimate of G(x) could be the fraction of data points falling in 
the area of integration: 

1 N 
G(x) = N :Le(x - x n ), 

where e is defined as 

e(x) = {~ 

n=l 

if xi 2 0 for all i = 1, ... , d, 
otherwise. 

(4) 

The method we propose uses such an estimate for the target outputs of the neural 
network. The estimate given by (4) is discontinuous. The neural network method 
developed here provides a smooth, and hence more realistic estimate of the distri­
bution function. The density can be obtained by differentiating the output of the 
network with respect to its inputs. 

For the low-dimensional case, we can uniformly sample (4) using a grid, to obtain 
the examples for the network. Beyond two or three dimensions, this becomes com­
putationally intensive. Alternatively, one could sample the input space randomly 
(using say a uniform distribution over the approximate range of Xn 's) , and for every 
point determine the network target according to (4) . Another option is to use the 
data points themselves as examples. The target for a point Xm would then be 

N 
A 1 ~ 

G(xm) = N _ 1 Lt 
n=l, n;im 

(5) 

We also use monotonicity as a hint to guide the training. Once training is performed, 
and H(x, w) approximates G(x), the density estimate can be obtained as 

3 Simulation Results 

· . '" · " · , , , , , , , , , , 

(a) 

g(x) = ad H(x, w) . (6) 
OXl ... oxd 

(b) 

Tn.lI:!DtIn3llly 
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Figure 1: Comparison of optimal Parzen windows, with neural network estimators. 
Plotted are the true density and the estimates (SLC , SIC, Parzen window with 
optimal kernel width [6, pg 40]). Notice that even the optimal Parzen window is 
bumpy as compared to the neural network. 

We tested our techniques for density estimation on data drawn from a mixture of 
two Gaussians: 

(7) 
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Data points were randomly generated and the density estimates using SLC or SIC 
(for 100 and 200 data points) were compared to the Parzen technique. Learning 
was performed with a standard 1 hidden layer neural network with 3 hidden units. 
The hidden unit activation function used was tanh and the output unit was an erf 
function l . A set of typical density estimates are shown in figure 1. 

4 Convergence of the Density Estimation Techniques 

~. 

! 
1 
1 

I 
,,' 

,,' ,,' 
N 

Figure 2: Convergence of the density estimation error for SIC. A five hidden unit 
two layer neural network was used to perform the mapping Xi -+ i/{N + 1), trained 
according to SIC. For various N, the resulting density estimation error was com­
puted for over 100 runs. Plotted are the results on a Log-Log scale. For comparison, 
also shown is the best 1 IN fit. 

U sing techniques from stochastic approximation theory, it can be shown that SLC 
converges to a similar solution to SIC [3], so, we focus our attention on the conver­
gence of SIC. Figure 2 shows an empirical study of the convergence behavior. The 
optimal linear fit between 10g(E) and 10g(N) has a slope of -0.97. This indicates 
that the convergence rate is about liN. The theoretically derived convergence rate 
is loglog(N)IN as we will shortly discuss. 

To analyze SIC, we introduce so called approximate generalized distribution func­
tions. We will assume that the true distribution function has bounded derivatives. 
Therefore the cumulative will be "approximately" implementable by generalized 
distributions with bounded derivatives (in the asymptotic limit, with probability 
1). We will then obtain the convergence to the true density. 

Let 9 be the space of distribution functions on the real line that possess continuous 
densities, i.e., X E 9 if X : R -+ [0,1]; X'(t) exists everywhere, is continuous and 
X' (t) ~ 0; X ( - 00) = 0 and X (00) = 1. This is the class of functions that we will 
be interested in. We define a metric with respect to 9 as follows 

II f II~ = i: f(t)2 X'(t)dt (8) 

II f II~ is the expectation of the squared value of f with respect to the distribution 
X E g. Let us name this the L2 X-norm of f. Let the data set (D) be {Xl S X2 S 
. .. S XN}, and corresponding to each Xi, let the target be Yi = il N + 1. We will 
assume that the true distribution function has bounded derivatives up to order K . 
We define the set of approximate sample distribution functions 1l'D as follows 
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Definition 4.1 Fix v > O. A v-approximate sample distribution (unction, H, sat­
isfies the following two conditions 

We will denote the set of all v-approximate sample distribution functions for a data 
set, D, and a given v by 1-lo' 
Let Ai = sUPx IG(i) I, i = 1 . . . K where we use the notation f(i) to denote the ith 
derivative. Define BnD) by 

BV(D)= inf sup lQ(iJI (9) 
t QE1I.'h x 

for fixed v > O. Note that by definition, for all E > 0, :J H E 1-lo such that 
sUPx IH(i)(x)1 ::; Bi + E. Bi(D) is the lowest possible bound on the ith derivative 
for the v-approximate sample distribution functions given a particular data set. In 
a sense, the "smoothest" approximating sample distribution function with respect 
to the ith derivative has an ith derivative bounded by BnD). One expects that 
Bi ::; Ai, at least in the limit N -+ 00. 

In the next theorem, we present the main theoretical result of the paper, namely 
a bound on the estimation error for the density estimator obtained by using the 
approximate sample distribution functions. It is embedded in a large amount of 
technical machinery, but its essential content is that if the true distribution function 
has bounded derivatives to order K, then, picking the approximate distribution 
function obeying certain bounds, we obtain a convergence rate for the estimation 
error of O((loglog(N)jN)l - l/K). 

Theore"m 4.2 (L2 convergence to the true density) Let N data points, Xi be 
drawn i.i.d. from the distribution G E g. Let sUPx IG(i) 1 = Ai for i = 0 ... K , where 

K ~ 2. Fix v > 2 and E > O. Let B'K(D) = infQE1I.'h suPx IQ(K) I. Let H E 1-lo 
be a v-approximate distribution function with BK = sUPx IHKI ::; B'K + E (by the 
definition of B/o such a v-approximate sample distribution function must exist). 
Then, for any F E g, as N -+ 00, the inequality 

II H' - G' II~ ::; 22 (K - l)(2AK + E)k F(N) (10) 

where 

:F(N) = [(1 + v) C10g~g(N)) l + N ~ 1 rr.. (11) 

holds with probability 1, as N -+ 00. 

We present the proof elsewhere [3]. • 
N otel: The theorem applies uniformly to any interpolator H E 1-lo' In particular, 

a large enough neural network will be one such monotonic interpolator, 
provided that the network can be trained to small enough error. This is 
possible by the universal approximation results for multilayer networks [2]. 

Note 2: This theorem holds for any E > 0 and v > 1. For smooth density func­
tions, with bounded higher derivatives, the convergence rate approaches 
o (log log( N) j N) which is faster convergence than the kernel density esti­
mator (for which the optimal rate is O(N- 4 / 5 )). 
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Note 3: No smoothing parameter needs to be determined. 

Note 4: One should try to find an approximate distribution function with the 
smallest possible derivatives. Specifically, of all the sample distribution 
functions, pick the one that "minimizes" B K, the bound on the Kth deri va­
tive. This could be done by introducing penalty terms, penalizing the mag­
nitudes of the derivatives (for example Tikhonov type regularizers [7]). 

5 Comments 

We developed two techniques for density estimation based on the idea of learning the 
cumulative by mapping the data points to a uniform density. Two techniques were 
presented, a stochastic technique (SLC), which is expected to inherit the character­
istics of most stochastic iterative algorithms, and a deterministic technique (SIC). 
SLC tends to be slow in practice, however, because each set of targets is drawn 
from the uniform distribution, this is anticipated to have a smoothing/regularizing 
effect - this can be seen by comparing SLC and SIC in figure 1 (a). We presented 
experimental comparison of our techniques with the Parzen technique. 

We presented a theoretical result that demonstrated the consistency of our tech­
niques as well as giving a convergence rate of O(loglog(N)/N), which is better 
than the optimal Parzen technique. No smoothing parameter needs to be chosen -
smoothing occurs naturally by picking the interpolator with the lowest bound for 
a certain derivative. For our methods, the majority of time is spent in the learning 
phase, but once learning is done, evaluating the density is fast. 
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