
Computation of Smooth Optical Flow in a
Feedback Connected Analog Network

Alan Stocker *
Institute of Neuroinforrnatics
University and ETH Zi.irich

Winterthurerstrasse 190
8057 Zi.irich, Switzerland

Abstract

Rodney Douglas
Institute of Neuroinforrnatics
University and ETH Zi.irich

Winterthurerstrasse 190
8057 Zi.irich, Switzerland

In 1986, Tanner and Mead [1] implemented an interesting constraint sat
isfaction circuit for global motion sensing in a VLSI. We report here a
new and improved a VLSI implementation that provides smooth optical
flow as well as global motion in a two dimensional visual field. The com
putation of optical flow is an ill-posed problem, which expresses itself as
the aperture problem. However, the optical flow can be estimated by the
use of regularization methods, in which additional constraints are intro
duced in terms of a global energy functional that must be minimized . We
show how the algorithmic constraints of Hom and Schunck [2] on com
puting smooth optical flow can be mapped onto the physical constraints
of an equivalent electronic network.

1 Motivation

The perception of apparent motion is crucial for navigation. Knowledge of local motion of
the environment relative to the observer simplifies the calculation of important tasks such as
time-to-contact or focus-of-expansion. There are several methods to compute optical flow.
They have the common problem that their computational load is large. This is a severe
disadvantage for autonomous agents, whose computational power is restricted by energy,
size and weight. Here we show how the global regularization approach which is necessary
to solve for the ill-posed nature of computing optical flow, can be formulated as a local
feedback constraint, and implemented as a physical analog device that is computationally
efficient.

* correspondence to: alan@ini .phys.ethz.ch

Computation of Optical Flow in an Analog Network 707

2 Smooth Optical Flow

Horn and Schunck [2] defined optical flow in relation to the spatial and temporal changes
in image brightness. Their model assumes that the total image brightness E(x, y, t) does
not change over time;

d
dt E(x, y, t) = O. (I)

Expanding equation (1) according to the chain rule of differentiation leads to

o 0 0
F == ox E(x, y, t)u + oy E(x, y, t)v + 8t E(x, y, t) = 0, (2)

where u = dx / dt and v = dy / dt represent the two components of the local optical flow
vector.
Since there is one equation for two unknowns at each spatial location, the problem is
ill-posed, and there are an infinite number of possible solutions lying on the constraint
line for every location (x, y). However, by introducing an additional constraint the prob
lem can be regularized and a unique solution can be found.
For example, Horn and Schunck require the optical flow field to be smooth. As a measure
of smoothness they choose the squares of of the spatial derivatives of the flow vectors,

(3)

One can also view this constraint as introducing a priori knowledge: the closer two points
are in the image space the more likely they belong to the projection of the same object. Un
der the assumption of rigid objects undergoing translational motion, this constraint implies
that the points have the same, or at least very similar motion vectors. This assumption is
obviously not valid at boundaries of moving objects, and so this algorithm fails to detect
motion discontinuities [3].
The computation of smooth optical flow can now be formulated as the minimization prob
lem of a global energy functional,

J J ~ dx dy ---7 min (4)

L

with F and 8 2 as in equation (2) and (3) respectively. Thus, we exactly apply the approach
of standard regularization theory [4]:

Ax=y
x = A -Iy

II Ax - y II +.x II P 11= min

y: data
inverse problem, ill-posed

regularization

The regularization parameter, .x, controls the degree of smoothing of the solution and its
closeness to the data. The norm, II . II, is quadratic. A difference in our case is that A
is not constant but depends on the data. However, if we consider motion on a discrete
time-axis and look at snapshots rather than continuously changing images, A is quasi
stationary.1 The energy functional (4) is convex and so, a simple numerical technique
like gradient descent would be able to find the global minimum. To compute optical flow
while preserving motion discontinuities one can modify the energy functional to include
a binary line process that prevents smoothing over discontinuities [4]. However, such an
functional will not be convex. Gradient descent methods would probably fail to find the
global amongst all local minima and other methods have to be applied.

1 In the a VLSI implementation this requires a much shorter settling time constant for the network
than the brightness changes in the image.

708 A. Stocker and R. Doug/as

3 A Physical Analog Model

3.1 Continuous space

Standard regularization problems can be mapped onto electronic networks consisting of
conductances and capacitors [5]. Hutchinson et al. [6] showed how resistive networks can
be used to compute optical flow and Poggio et al. [7] introduced electronic network so
lutions for second-order-derivative optic flow computation. However, these proposed net
work architectures all require complicated and sometimes negative conductances although
Harris et al. [8] outlined a similar approach as proposed in this paper independently. Fur
thennore, such networks were not implemented practically, whereas our implementation
with constant nearest neighbor conductances is intuitive and straightforward.
Consider equation (4):

L = L(u, v, '\lu, '\lv, x, y).
The Lagrange function L is sufficiently regular (L E C 2), and thus it follows from cal
culus of variation that the solution of equation (4) also suffices the linear Euler-Lagrange
equations

A '\l2u - Ex (Exu + Eyv + E t)

A'\l2v - Ey(Exu + Eyv + E t)

o
O.

(5)

The Euler-Lagrange equations are only necessary conditions for equation (4). The suffi
cient condition for solutions of equations (5) to be a weak minimum is the strong Legendre
condition, that is

L'ilu'ilu > 0
which is easily shown to be true.

and L'ilv'ilv > 0,

3.2 Discrete Space - Mapping to Resistive Network

By using a discrete five-point approximation of the Laplacian \7 2 on a regular grid, equa
tions (5) can be rewritten as

A(Ui+1)' + Ui-1)' + Ui)'+1 + Ui)-1 - 4Ui)') - Ex, ,(Ex ,Ui)' + E y' Vi)' + E t ,) =0 (6)
, , , , , t,] l,J' ' .] ' 1 , J

A(Vi+1)' +Vi- 1)' +Vi)'+1 +Vi)'-1 - 4Vi)') -Ey' (Ex, ,Ui)' +Ey' ,Vi)' +Et, ,)=0 , , , , , 1 ,)'.J ' 1 ,1' 1,]

where i and j are the indices for the sampling nodes. Consider a single node of the resistive
network shown in Figure 1:

Figure 1: Single node of a resistive network.

From Kirchhoff's law it follows that
dV,· ,

C d~') = G(Vi+1 ,j + Vi-I ,j + Vi,HI + Vi,j-1 - 4Vi,j) + lini.j (7)

Computation of Optical Flow in an Analog Network 709

where Vi ,j represents the voltage and l in', i the input current. G is the conductance between
two neighboring nodes and C the node capacitance.
In steady state, equation (7) becomes

G(Vi+I ,j + Vi - I ,j + Vi, j+! + Vi ,j- I - 4Vi ,j) + lini" = O. (8)

The analogy with equations (6) is obvious:

G ~ .A

lUin ·· ~ -Ex· . (Ex · UiJ' +Ey , ViJ' +Et ·)
t t] t.) t t) ' t ,]' 1 ,)

lVin " ~ -Ey. , (Ex " UiJ, +Ey" Vi),+Et ,) (9)
t , } t , } 1 ,) ' 1 ,) ' I , J

To create the full system we use two parallel resistive networks in which the node voltages
Ui, j and Vi,j represent the two components of the optical flow vector U and v . The input
currents lUini,i and lVini" are computed by a negative recurrentfeedback loop modulated
by the input data, which are the spatial and temporal intensity gradients.
Notice that the input currents are proportional to the deviation of the local brightness con
straint: the less the local optical flow solution fits the data the higher the current lini.j will
be to correct the solution and vice versa.
Stability and convergence of the network are guaranteed by Maxwell 's minimum power
principle [4, 9].

4 The Smooth Optical Flow Chip

4.1 Implementation

-CP\~}1J
~tf)~
! I ~

Figure 2: A single motion cell within the three layer network. For simplicity only one
resistive network is shown.

The circuitry consists of three functional layers (Figure 2). The input layer includes an
array of adaptive photoreceptors [10] and provides the derivatives of the image brightness
to the second layer, The spatial gradients are the first-order linear approximation obtained
by subtracting the two neighboring photoreceptor outputs. The second layer computes the
input current to the third layer according to equations (9). Finally these currents are fed
into the two resistive networks that report the optical flow components.
The schematics of the core of a single motion cell are drawn in Figure 3. The photoreceptor
and the temporal differentiator are not shown as well as the other half of the circuitry that
computes the y-component of the flow vector.

710 A. Stocker and R. Doug/as

A few remarks are appropriate here: First, the two components of the optical flow vector
have to be able to take on positive and negative values with respect to some reference po
tential. Therefore, a symmetrical circuit scheme is applied where the positive and negative
(reference voltage) values are carried on separate signal lines. Thus, the actual value is
encoded as the difference of the two potentials.

temporal
differentiator

E (E V + E)
x x x t

~." " " " :

Exl
l _ f-VViBias !

I:········ .. ·· .. · .. ····· .. ··· .. ·:

OpBias

v+
X DiffBias

1

Figure 3: Cell core schematics; only the circuitry related to the computation of the
x-component of the flow vector is shown.

Second, the limited linear range of the Gilbert multipliers leads to a narrow span of flow ve
locities that can be computed reliably. However, the tuning can be such that the operational
range is either at high or very low velocities. Newer implementations are using modified
multipliers with a larger linear range.
Third, consider a single motion cell (Figure 2). In principle, this cell would be able to sat
isfy the local constraint perfectly. In practice (see Figure 3), the finite output impedance of
the p-type Gilbert multiplier slightly degrades this ideal solution by imposing an effective
conductance G load . Thus, a constant voltage on the capacitor representing a non-zero mo
tion signal requires a net output current of the mUltiplier to maintain it. This requirement
has two interesting consequences:
i) The reported optical flow is dependent on the spatial gradients (contrast). A single un
coupled cell according to Figure 2 has a steady state solution with

-Et .Ex . U I ,] ' .J
i ,j '" (Gload + E;i .j + E~iJ and

-EtEy .. 'Y: 1,) 1 , J

i,j '" (Gload + E; . + Ey2)
1,) 1,)

respectively. For the same object speed, the chip reports higher velocity signals for higher
spatial gradients. Preferably, Gload should be as low as possible to minimize its influence
on the solution.
ii) On the other hand, the locally ill-posed problem is now well-posed because G load im
poses a second constraint. Thus, the chip behaves sensibly in the case of low contrast
input (small gradients), reporting zero motion where otherwise, unreliable high values
would occur. This is convenient because the signal-to-noise ratio at low contrast is very
poor. Furthermore, a single cell is forced to report the velocity on the constraint line with
smallest absolute value, which is normal to the spatial gradient. That means that the chip

Computation of Optical Flow in an Analog Network 711

reports normal flow when there is no neighbor connection. Since there is an trade-off be
tween the robustness of the optical flow computation and a low conductance Glaad, the
follower-connected transconductance amplifier in our implementation allows us to control
G laad above its small intrinsic value.

4.2 Results

The results reported below were obtained from a MOSIS tinychip containing a 7x7 array
of motion cells each 325x325 A 2 in size . The chip was fabricated in 1.2 J.,tm technology at
AMI.

- \
......... "'- , " "- "- ,""",-- ~ ~

"- "- "- , "- "- , ," "--, " ""- 3 ... "- ,~" ,
,,,-

"" .' , ," "- ,
-~" ,

" ,~" , ,

." "- .' ," "- ,
"

'f-~' ~ , ,1'-'" , , ,
a b c

Figure 4: Smooth optical flow response of the chip to an left-upwards moving edge.
a: photoreceptor output, the arrow indicates the actual motion direction. b: weak coupling
(small conductance G). c: strong coupling.

\ -- \
I

, lr- ~~~~~~

, - ,
,- -/ 2F---~ ~~ ~ -E-- ~

3
, " "'--

3F-- ~ ~ ~ "'E--- ~ -E--

'r-- /" "- / .F--~~~~~~

--\ 'I /
,.- ,~ Sr- ~ ~ ~ ~ '4-- <Eo--

. ,
I I "

,, '.... &r-- ~ 'E--- ~ -E-- 'E-- ~

.,.- ,/ \
1F-- ~ ~ ~ ~ '<E-- 4-

a b c

Figure 5: Response of the optical flow chip to a plaid stimulus moving towards the left:
a: photoreceptor output; b shows the normal flow computation with disabled coupling
between the motion cells in the network while in c the coupling strength is at maximum.

The chip is able to compute smooth optical flow in a qualitative manner. The smoothness
can be set by adjusting the coupling conductances (Figure 4). Figure 5b presents the nor
mal flow computation that occurs when the coupling between the motion cells is disabled.
The limited resolution of this prototype chip together with the small size of the stimulus
leads to a noisy response. However it is clear that the chip perceives the two gratings as
separate moving objects with motion normal to their edge orientation. When the network

712 A. Stocker and R. Douglas

conductance is set very high the chip perfonns a collective computation solving the aper
ture problem under the assumption of single object motion. Figure 5c shows how the chip
can compute the correct motion of a plaid pattern.

5 Conclusion

We have presented here an aVLSI implementation of a network that computes 2D smooth
optical flow. The strength of the resistive coupling can be varied continuously to obtain
different degrees of smoothing, from a purely local up to a single global motion signal. The
chip ideally computes smooth optical flow in the classical definition of Horn and Schunck.
Instead of using negative and complex conductances we implemented a network solution
where each motion cell is perfonning a local constraint satisfaction task in a recurrent
negative feedback loop.
It is significant that the solution of a global energy minimization task can be achieved
within a network of local constraint solving cells that do not have explicit access to the
global computational goal.

Acknowledgments

This article is dedicated to Misha Mahowald. We would like to thank Eric Vittoz, Jorg
Kramer, Giacomo Indiveri and Tobi Delbriick for fruitful discussions. We thank the Swiss
National Foundation for supporting this work and MOSIS for chip fabrication.

References

[1] J. Tanner and c.A. Mead. An integrated analog optical motion sensor. In S. -Y. Kung,
R. Owen, and G. Nash, editors, VLSI Signal Processing, 2, page 59 ff. IEEE Press,
1986.

[2] B.K. Horn and B.G. Schunck. Detennining optical flow. Artificial Intelligence,
17: 185-203, 1981.

[3] A. Yuille. Energy functions for early vision and analog networks. Biological Cyber
netic~61:115-123, 1989.

[4] T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory.
Nature, 317(26):314-319, September 1985.

[5] B. K. Horn. Parallel networks for machine vision. Technical Report 1071, MIT AI
Lab, December 1988.

[6] J. Hutchinson, C. Koch, 1. Luo, and C. Mead. Computing motion using analog and
binary resistive networks. Computer, 21 :52-64, March 1988.

[7] T. Poggio, W. Yang, and V. Torre. Optical flow: Computational properties and net
works, biological and analog. The Computing Neuron, pages 355-370, 1989.

[8] 1.G. Harris, C. Koch, E. Staats, and J. Luo. Analog hardware for detecting disconti
nuities in early vision. Int. Journal of Computer Vision, 4:211-223, 1990.

[9] J. Wyatt. Little-known properties of resistive grids that are useful in analog vision chip
designs. In C. Koch and H. Li, editors, Vision Chips: Implementing Vision Algorithms
with Analog VLSI Circuits, pages 72-89. IEEE Computer Society Press, 1995.

[10] S.c. Liu. Silicon retina with adaptive filtering properties. In Advances in Neural
Information Processing Systems 10, November 1997.

Scheduling Straight-Line Code Using
Reinforcement Learning and Rollouts

Amy McGovern and Eliot Moss
{ amy I moss@cs. umass. edu}

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA 01003

Abstract

The execution order of a block of computer instructions can make a
difference in its running time by a factor of two or more. In order to
achieve the best possible speed, compilers use heuristic schedulers ap
propriate to each specific architecture implementation. However, these
heuristic schedulers are time-consuming and expensive to build. In this
paper, we present results using both rollouts and reinforcement learning
to construct heuristics for scheduling basic blocks. The rollout scheduler
outperformed a commercial scheduler, and the reinforcement learning
scheduler performed almost as well as the commercial scheduler.

1 Introduction

Although high-level code is generally written as if it were going to be executed sequen
tially, many modern computers are pipelined and allow for the simultaneous issue of mul
tiple instructions. In order to take advantage of this feature , a scheduler needs to reorder
the instructions in a way that preserves the semantics of the original high-level code while
executing it as quickly as possible. An efficient schedule can produce a speedup in execu
tion of a factor of two or more. However, building a scheduler can be an arduous process.
Architects developing a new computer must manually develop a specialized instruction
scheduler each time a change is made in the proposed system. Building a scheduler auto
matically can save time and money. It can allow the architects to explore the design space
more thoroughly and to use more accurate metrics in evaluating designs.

Moss et al. (1997) showed that supervised learning techniques can induce excellent basic
block instruction schedulers for the Digital Alpha 21064 processor. Although all of the
supervised learning methods performed quite well, they shared several limitations. Super
vised learning requires exact input/output pairs. Generating these training pairs requires
an optimal scheduler that searches every valid permutation of the instructions within a ba
sic block and saves the optimal permutation (the schedule with the smallest running time).
However, this search was too time-consuming to perform on blocks with more than 10 in-

904 A. McGovern and E. Moss

structions, because optimal instruction scheduling is NP-hard. Using a semi-supervised
method such as reinforcement learning or rollouts does not require generating training
pairs, so the method can be applied to larger basic blocks and can be trained without know
ing optimal schedules.

2 Domain Overview
Moss et al. (1997) gave a full description of the domain. This study presents an overview,
necessary details, our experimental method and detailed results for both rollouts and rein
forcement learning.

We focused on scheduling basic blocks of instructions on the 21064 version (DEC, 1992)
of the Digital Alpha processor (Sites, 1992). A basic block is a set of instructions with a
single entry point and a single exit point. Our schedulers could reorder instructions within
a basic block but could not rewrite, add, or remove any instructions. The goal of each
scheduler is to find a least-cost valid ordering of the instructions. The cost is defined as the
simulated execution time of the block. A valid ordering is one that preserves the seman
tically necessary ordering constraints of the original code. We insure validity by creating
a dependency graph that directly represents those necessary ordering relationships. This
graph is a directed acyclic graph (DAG).

The Alpha 21064 is a dual-issue machine with two different execution pipelines . Dual
issue occurs only if a number of detailed conditions hold, e.g., the two instructions match
the two pipelines. An instruction can take anywhere from one to many tens of cycles to
execute. Researchers at Digital have a publicly available 21064 simulator that also includes
a heuristic scheduler for basic blocks. We call that scheduler DEC. The simulator gives the
running time for a given scheduled block assuming all memory references hit the cache
and all resources are available at the beginning of the block. All of our schedulers used a
greedy algorithm to schedule the instructions, i.e., they built schedules sequentially from
beginning to end with no backtracking.

In order to test each scheduling algorithm, we used the 18 SPEC95 benchmark programs.
Ten of these programs are written in FORTRAN and contain mostly floating point calcula
tions. Eight of the programs are written in C and focus more on integer, string, and pointer
calculations. Each program was compiled using the commercial Digital compiler at the
highest level of optimization. We call the schedules output by the compiler OR/G. This
collection has 447,127 basic blocks, containing 2,205,466 instructions.

3 Rollouts
Rollouts are a form of Monte Carlo search, first introduced by Tesauro and Galperin (1996)
for use in backgammon. Bertsekas et al. (l997a,b) have explored rollouts in other domains
and proven important theoretical results . In the instruction scheduling domain, rollouts
work as follows: suppose the scheduler comes to a point where it has a partial schedule and
a set of (more than one) candidate instructions to add to the schedule. For each candidate,
the scheduler appends it to the partial schedule and then follows a fixed policy 1r to schedule
the remaining instructions. When the schedule is complete, the scheduler evaluates the
running time and returns. When 1r is stochastic, this rollout can be repeated many times for
each instruction to achieve a measure of the average expected outcome. After rolling out
each candidate, the scheduler picks the one with the best average running time.

Our first set of rollout experiments compared three different rollout policies 1r. The theory
developed by Bertsekas et al. (l997a,b) proved that if we used the DEC scheduler as 1r,

we would perform no worse than DEC. An architect proposing a new machine might not
have a good heuristic available to use as 1r, so we also considered policies more likely to be
available. The first was the random policy, RANDOM-1r, which is a choice that is clearly
always available. Under this policy, the rollout makes all choices randomly. We also used

Scheduling Straight-Line Code Using RL and Rollouts 905

the ordering produced by the optimizing compiler ORIG, denoted ORIG-1r. The last rollout
policy tested was the DEC scheduler itself, denoted DEC-1r.

The scheduler performed only one rollout per candidate instruction when using ORIG-1r
and DEC-1r because they are deterministic. We used 25 rollouts for RANDOM-1r. After
performing a number of rollouts for each candidate instruction, we chose the instruction
with the best average running time. As a baseline scheduler, we also scheduled each block
randomly. Because the running time increases quadratically with the number of rollouts,
we focused our rollout experiments on one program in the SPEC95 suite: applu.

Table 1 gives the performance of each rollout scheduler as compared to the DEC scheduler
on all 33,007 basic blocks of size 200 or less from applu. To assess the performance of each
rollout policy 1r, we used the ratio of the weighted execution time of the rollout scheduler
to the weighted execution time of the DEC scheduler. More concisely, the performance
measure was:

. Lall blocks rollout scheduler execution time * number of times block is executed
ratio = ===:=-'-'-~==-~-----------------------

Lall blocks DEC scheduler execution time * number of times block is executed
This means that a faster running time on the part of our scheduler would give a smaller
ratio.

Scheduler Ratio Scheduler Ratio
Random 1.3150 RANDOM-1T' 1.0560
ORIG-1T' 0.9895 DEC-1T' 0.9875

Table 1: Ratios of the weighted execution time of the rollout scheduler to the DEC sched
uler. A ratio of less than one means that the rollouts outperformed the DEC scheduler.

All of the rollout schedulers far outperformed the random scheduler which was 31 % slower
than DEC. By only adding rollouts, RANDOM-1r was able to achieve a running time only
5% slower than DEC. Only the schedulers using ORIG-1r and DEC-1r as a model outper
formed the DEC scheduler. Using ORIG-1r and DEC-1r for rollouts produced a schedule
that was 1.1 % faster than the DEC scheduler on average. Although this improvement may
seem small, the DEC scheduler is known to make optimal choices 99.13% of the time for
blocks of size 10 or less (Stefanovic, 1997).

Rollouts were tested only on applu rather than on the entire SPEC95 benchmark suite due
to the lengthy computation time. Rollouts are costly because performing m rollouts on n
instructions is O(n2m), whereas a greedy scheduling algorithm is O(n). Again, because of
the time required, we only performed five runs of RANDOM-1r. Since DEC-1r and ORIG-1r
are deterministic, only one run was necessary. We also ran the random scheduler 5 times.
Each number reported above is the geometric mean of the ratios across the five runs.

Part of the motivation behind using rollouts in a scheduler is to obtain fast schedules without
spending the time to build a precise heuristic. With this in mind, we explored RANDOM-1r
more closely in a follow-up experiment.

Evaluation of the number of rollouts

This experiment considered how performance varies with the number of rollouts. We tested
1,5, 10,25, and 50 rollouts per candidate instruction. We also varied the metric for choos
ing among candidates. Instead of always choosing the instruction with the best average
performance, we also experimented with selecting the instruction with the absolute best
running time among its rollouts. We hypothesized that selection of the absolute best path
might lead to better performance overall. These experiments were performed on all 33,007
basic blocks of size 200 or less from applu.

Figure 1 shows the performance of the rollout scheduler as a function of the number of
rollouts. Performance is assessed in the same way as before: ratio of weighted execution

906 A. McGovern and E. Moss

Performance over number of rollouts
, ,8

, '6 1-"- ~~t l
,",4

~
lij' '2
E
.g " .,
Q.

, 08

'06

1.04, 5 '0 25 50
Number of Rollouts

Figure 1: Performance of rollout scheduler with the random model as a function of the
number of rollouts and the choice of evaluation function.

times. Thus, a lower number is better. Each data point represents the geometric mean over
five different runs. The difference in performance between one rollout and five rollouts
using the average choice for each rollout is 1.16 versus 1.10. However, the difference
between 25 rollouts and 50 rollouts is only 1.06 versus 1.05. This indicates the tradeoff
between schedule quality and the number of rollouts. Also, choosing the instructions with
the best rollout schedule did not yield better performance over any numbers of rollouts.
We hypothesize that this is due to the stochastic nature of the rollouts. Once the scheduler
chooses an instruction, it repeats the rollout process again. By choosing the instruction with
the absolute best rollout, there is no guarantee that the scheduler will find that permutation
of instructions again on the next rollout. When it chooses the instruction with the best
average rollout, the scheduler has a better chance of finding a good schedule on the next
rollout.

Although the rollout schedulers performed quite well, the extremely long scheduling time
is a major drawback. Using 25 rollouts per block took over 6 hours to schedule one pro
gram. Unless this aspect can be improved, rollouts cannot be used for all blocks in a
commercial scheduler or in evaluating more than a few proposed machine architectures.
However, because rollout scheduling performance is high, rollouts could be used to opti
mize the schedules on important (long running times or frequently executed) blocks within
a program.

4 Reinforcement Learning Results

4.1 Overview

Reinforcement learning (RL) is a collection of methods for discovering near-optimal solu
tions to stochastic sequential decision problems (Sutton & Barto, 1998). A reinforcement
learning system does not require a teacher to specify correct actions. Instead, the learning
agent tries different actions and observes their consequences to determine which actions are
best. More specifically, in the reinforcement learning framework, a learning agent interacts
with an environment over a series of discrete time steps t = 0,1,2, 3, At each time t,
the agent is in some state, denoted St, and chooses an action, denoted at , which causes the
environment to transition to state StH and to emit a reward, denoted rtH' The next state
and reward depend only on the preceding state and action, but they may depend on it in a
stochastic fashion. The objective is to learn a (possibly stochastic) mapping from states to
actions called a policy, which maximizes the cumulative discounted reward received by the
agent. More precisely, the objective is to choose action at so as to maximize the expected
return, E n::::o -yirt+i+l }, where -y E [0, 1) is a discount-rate parameter.

Scheduling Straight-Line Code USing RL and Rollouts 907

A common solution strategy is to approximate the optimal value function V* , which maps
states to the maximal expected return that can be obtained starting in each state and taking
the best action. In this paper we use temporal difference (TD) learning (Sutton, 1988). In
this method, the approximation to V* is represented by a table with an entry V (s) for every
state. After each transition from state St to state StH, under an action with reward rt+l,
the estimated value function V (St) is updated by:

V(St) +- V(St) + a [rtH + ,V(St+l) - V(st)]

where a is a positive step-size parameter.

4.2 Experimental Results

Scheeff et al. (1997) have previously experimented with reinforcement learning in this
domain. However, the results were not as good as hoped. Finding the right reward structure
was the difficult part of using RL in this domain. Rewarding based on number of cycles
to execute the block does not work well as it punishes the learner on long blocks. To
normalize for this effect, Scheeff et al. (1997) rewarded based on the cycles per instruction
(CPI). However, learning with this reward also did not work well as some blocks have more
unavoidable idle time than others. A reward based solely on CPI does not account for this
aspect. To account for this variation across blocks, we gave the RL scheduler a final reward
of:

. (. (# of instructions)) r = time to execute block-max minimum wetghted critical path, 2

The scheduler received a reward of zero unless the schedule was complete. As the 21064
processor can only issue two instructions at a time, the number of instructions divided by 2
gives an absolute lower bound on the running time. The weighted critical path (wcp) helps
to solve the problem of the same size blocks being easier or harder to schedule than others.
When a block is harder to execute than another block of the same size, the wcp tends to
be higher, thus causing the learner to get a different reward. The wcp is correlated with
the predicted number of execution cycles for the DEC scheduler (r = 0.9) and the number
of instructions divided by 2 is also correlated (r = 0.78) with the DEC scheduler. Future
experiments will use a weighted combination of these two features to compute the reward.

As with the supervised learning results presented in Moss et al. (1997), the RL system
learned a preferential value function between candidate instructions. That is, instead of
learning the value of instruction A or instruction B, RL learned the value of choosing
instruction A over instruction B. The state space consisted of a tuple of features from a
current partial schedule and the two candidate instructions. These features were derived
from knowledge of the DEC simulator. The features and our intuition for their importance
are summarized in Table 2.

Previous experiments (Moss et al. 1997) showed that the actual value of wcp and e did
not matter as much as their relative values. Thus, for those features we used the signum
«(1) of the difference of their values for the two candidate instruction. Signum returns
-1,0, or 1 depending on whether the value is less than, equal to, or greater than zero. Using
this representation, the RL state space consisted of the following tuple, given candidate
instruction x and y and partial schedule p:

state_vec(p, x, y) = (odd(P), ic(x) , ic(y),d(x), dey), a(wcp(x) - wcp(y)), a(e(x) - e(y»)

This yields 28,800 unique states. Figure 2 shows an example partial schedule, a set of
candidate instructions, and the resulting states for the RL system.

The RL scheduler does not learn over states where there are no choices to be made. The
last choice point in a trajectory is given the final reward even if further instructions are
scheduled from that point. The values of multiple states are updated at each time step be
cause the instruction that is chosen affects the preference function of multiple states. For

908 A. McGovern and E. Moss

Heuristic Name Heuristic Description Intuition for Use
Odd Partial (odd) Is the current number of instructions sched- If TRUE, we're interested in scheduling in-

uled odd or even? structions that can dual-issue with the pre-
vious instruction.

Instruction Class (ic) The Alpha's instructions can be divided The instructions in each class can be ex-
into equivalence classes with respect to ecuted only in certain execution pipelines,
timing properties. etc.

Weighted Critical Path (wcp) The height of the instruction in the DAG Instructions on longer critical paths should
(the length of the longest chain of instruc- be scheduled first, since they affect the
tions dependent on this one), with edges lower bound of the schedule cost.
weighted by expected latency of the result
produced by the instruction

Actual Dual (d) Can the instruction dual-issue with the pre- If Odd Partial is TRUE, it is important that
vious scheduled instruction? we find an instruction, if there is one, that

can issue in the same cycle with the previ-
ous scheduled instruction.

Max Delay (e) The earliest cycle when the instruction can We want to schedule instructions that will
begin to execute, relative to the current cy- have their data and functional unit available
cle; this takes into account any wait for in- earliest.
puts for functional units to become avail-
able

Table 2: Features for Instructions and Partial Schedule

States for RL system
partial schedule p State label State

AB state_ vec(p,A,B)
AC state_ vec(p,A,C)
BC state_vec(p,B,C)
BA state_ vec(p,B,A)

c CA state_vec(p,C,A)
CB state_ vec(p,C,B)

A

candidate instructions

Figure 2: On the left is a graphical depiction of a partial schedule and three candidate
instructions. The table on the right shows how the RL system makes its states from this.

example, using the partial schedule and candidate instructions shown in Figure 2, schedul
ing instruction A, the RL system would backup values for AB, AC, and the opposite values
for BA and CA.

Using this system, we performed leave-one-out cross validation across all blocks of the
SPEC95 benchmark suite. Blocks with more than 800 instructions were broken into blocks
of 800 or less because of memory limitations on the DEC simulator. This was true for
only two applications: applu and fpppp. The RL system was trained online for 19 of the
20 applications using Q = 0.05 and an £-greedy exploration method with £ = 0.05. This
was repeated 20 different times, holding one program from SPEC95 out of the training
each time. We then evaluated the greedy policy (£ = 0) learned by the RL system on each
program that had been held out. All ties were broken randomly. Performance was assessed
the same way as before. The results for each benchmark are shown in Table 3. Overall,
the RL scheduler performed only 2% slower than DEC. This is a geometric mean over all
applications in the suite and on all blocks. Although the RL system did not outperform the
DEC scheduler overall, it significantly outperformed DEC on the large blocks (applu-big
and fpppp-big) .

5 Conclusions

The advantages of the RL scheduler are its performance on the task, its speed, and the fact
that it does not rely on any heuristics for training. Each run was much faster than with
rollouts and the performance came close to the performance of the DEC scheduler. In a

Scheduling Straight-Line Code Using RL and Rollouts 909

App Ratio App Ratio App Ratio App Ratio
applu 1.001 applu-big 0.959 apsi 1.018 ccl 1.022
compress95 0.977 fpppp 1.055 fpppp-big 0.977 go 1.028
hydro2d 1.022 ijpeg 0.975 Ii 1.012 m88ksim 1.042
mgrid 1.009 perl 1.014 su2cor 1.018 swim 1.040
tomcatv 1.019 turb3d 1.218 vortex 1.032 waveS 1.032

Table 3: Performance of the greedy RL-scheduler on each application in SPEC95 over all
leave-one-out cross-validation runs as compared to DEC. Applications whose running time
was better than DEC are shown in italics.

system where multiple architectures are being tested, RL could provide a good scheduler
with minimal setup and training.

We have demonstrated two methods of instruction scheduling that do not rely on having
heuristics and that perform quite well. Future work could address tying the two methods
together while retaining the speed of the RL learner, issues of global instruction scheduling,
scheduling loops, and validating the techniques on other architectures.

Acknowledgments
We thank John Cavazos and Darko Stefanovic for setting up the simulator and for prior work in
this domain, along with Paul Utgoff, Doina Precup, Carla Brodley, and David Scheeff. We also
wish to thank Andrew Barto, Andrew Fagg, and Doina Precup for comments on earlier versions of
the paper. This work is supported in part by the National Physical Science Consortium, Lockheed
Martin, Advanced Technology Labs, and NSF grant IRI-9503687 to Roderic A. Grupen and Andrew
G. Barto. We thank various people of Digital Equipment Corporation, for the DEC scheduler and the
ATOM program instrumentation tool (Srivastava & Eustace, 1994), essential to this work. We also
thank Sun Microsystems and Hewlett-Packard for their support.

References
Bertsekas, D. P. (1997). Differential training of rollout policies. In Proc. of the 35th Allerton Confer

ence on Communication, Control, and Computing. Allerton Park, Ill.
Bertsekas, D. P., Tsitsiklis, 1. N. & Wu, c. (1997). Rollout algorithms for combinatorial optimization.

Journal of Heuristics.
DEC (1992). DEC chip 21064-AA Microprocessor Hardware Reference Manual (first edition Ed.) .

Maynard, MA: Digital Equipment Corporation.
Moss , 1. E. B., Utgoff, P. E., Cavazos, J., Precup, D., Stefanovic, D., Brodley, C. E. & Scheeff,

D. T. (1997). Learning to schedule straight-line code. In Proceedings of Advances in Neural
Information Processing Systems 10 (Proceedings of NIPS'97) . MIT Press.

Scheeff, D., Brodley, c., Moss, E., Cavazos, 1. & Stefanovic, D. (1997). Applying reinforcement
learning to instruction scheduling within basic blocks. Technical report, University of Mas
sachusetts, Amherst.

Sites, R. (1992). Alpha Architecture Reference Manual. Maynard, MA: Digital Equipment Corpora
tion.

Srivastava, A. & Eustace, A. (1994). ATOM: A system for building customized program analysis
tools. In Proc. ACM SIGPLAN '94 Con! on Prog. Lang. Design and Imp!. (pp. 196-205).

Stefanovic, D. (1997). The character of the instruction scheduling problem. University of Mas
sachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning,
3,9-44.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning. An Introduction . Cambridge, MA:
MIT Press.

Tesauro, G. & Galperin, G. R. (1996). On-line policy improvement using monte-carlo search. In
Advances in Neural Information Processing: Proceedings of the Ninth Conference. MIT Press.

