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Abstract 

We explain how the training data can be separated into clean informa
tion and unexplainable noise. Analogous to the data, the neural network 
is separated into a time invariant structure used for forecasting, and a 
noisy part. We propose a unified theory connecting the optimization al
gorithms for cleaning and learning together with algorithms that control 
the data noise and the parameter noise. The combined algorithm allows 
a data-driven local control of the liability of the network parameters and 
therefore an improvement in generalization. The approach is proven to 
be very useful at the task of forecasting the German bond market. 

1 Introduction: The Observer-Observation Dilemma 

Human beings believe that they are able to solve a psychological version of the Observer
Observation Dilemma. On the one hand, they use their observations to constitute an under
standing of the laws of the world, on the other hand, they use this understanding to evaluate 
the correctness of the incoming pieces of information. Of course, as everybody knows, 
human beings are not free from making mistakes in this psychological dilemma. We en
counter a similar situation when we try to build a mathematical model using data. Learning 
relationships from the data is only one part of the model building process. Overrating this 
part often leads to the phenomenon of overfitting in many applications (especially in eco
nomic forecasting). In practice, evaluation of the data is often done by external knowledge, 
i. e. by optimizing the model under constraints of smoothness and regularization [7]. If we 
assume, that our model summerizes the best knowledge of the system to be identified, why 
should we not use the model itself to evaluate the correctness of the data? One approach to 
do this is called Clearning [11]. In this paper, we present a unified approach of the interac
tion between the data and a neural network (see also [8]). It includes a new symmetric view 
on the optimization algorithms, here learning and cleaning, and their control by parameter 
and data noise. 
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2 Learning 

2.1 Learning reviewed 

We are especially interested in using the output of a neural network y( x, w), given the 
input pattern, x, and the weight vector, w, as a forecast of financial time series. In the 
context of neural networks learning nonnally means the minimization of an error function 
E by changing the weight vector w in order to achieve good generalization performance. 
Typical error functions can be written as a sum of individual terms over all T training 
patterns, E = ~ 'L,;=1 E t . For example, the maximum-likelihood principle leads to 

E t = 1/2 (y(x, w) - yt)2 , (1) 

with yt as the given target pattern. If the error function is a nonlinear function of the pa
rameters, learning has to be done iteratively by a search through the weight space, changing 
the weights from step T to T + 1 according to: 

(2) 

There are several algorithms for choosing the weight increment ~W(T) , the most easiest 
being gradient descent. After each presentation of an input pattern, the gradient gt := 
VEt Iw of the error function with respect to the weights is computed. In the batch version 
of gradient descent the increments are based on all training patterns 

1 T 

~W(T) = -"1g = -"1 T L gt, 

t=l 
(3) 

whereas the pattern-by-pattern version changes the weights after each presentation of a 
pattern Xt (often randomly chosen from the training set): 

(4) 

The learning rate "1 is typically held constant or follows an annealing procedure during 
training to assure convergence. Our experiments have shown that small batches are most 
useful, especially in combination with Vario-Eta, a stochastic approximation of a Quasi
Newton method [3]: 

N 

~W(T) = - "1 . ~ L gt, J + 'L,(gt - g)2 N t=l 
(5) 

with and N ~ 20. Learning pattern-by-pattern or with small batches can be viewed as a 
stochastic search process because we can write the weight increments as: 

(6) 

These increments consist of the terms 9 with a drift to a local minimum and of noise terms 
(k 'L,~ 1 gt - g) disturbing this drift. 

2.2 Parameter Noise as an Implicit Penalty Function 

Consider the Taylor expansion of E ( w) around some point w in the weight space 

1 
E(w + ~w) = E(w) + VE ~w + 2~W'H ~w (7) 
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with H as the Hessian of the error function. Assume a given sequence of T disturbance 
vectors ~ Wt, whose elements ~ Wt ( i) are identically, independently distributed (i .i.d.) with 
zero mean and variance (row-)vector var(~wi) to approximate the expectation (E( w) by 

1", 1", . 
(E(w) ~ T L...J E(w + ~Wt) = E(w) + :2 L...J var(~w(z))Hii' (8) 

t i 

with Hii as the diagonal elements of H. In eq. 8, noise on the weights acts implicitly as a 
penalty term to the error function given by the second derivatives H ii . The noise variances 
var( ~ w( i)) operate as penalty parameters. As a result of this flat minima solutions which 
may be important for achieving good generalization performance are favored [5]. 

Learning pattern-by-pattem introduces such noise in the training procedure i.e., ~ Wt = 
-1] • gt· Close to convergence, we can assume that gt is i.i.d. with zero mean and variance 
vector var(gi) so that the expected value can be approximated by 

TJ2 82 E 
(E(w) ~ E(w) + - Lvar(gd-8 2' 

2 . Wi 
I 

(9) 

This type of learning introduces to a local penalty parameter var( ~ w ( i) ), characterizing 
the stability of the weights w = [Wdi=l, ... ,k. 

The noise effects due to Vario-Eta learning ~wt(i) = -R . gti leads to 

1]2 82 E 
(E(w) ~ E(w) + 2 :L 8w~' 

i I 

(10) 

By canceling the term var(gi) in eq. 9, Vario-Eta achieves a simplified uniform penalty 
parameter, which depends only on the learning rate 1]. Whereas pattern-by-pattern learning 
is a slow algorithm with a locally adjusted penalty control, Vario-Eta is fast only at the cost 
of a simplified uniform penalty term. We summarize this section by giving some advice on 
how to learn to flat minima solutions: 

• Train the network to a minimal training error solution with Vario-Eta, which is a 
stochastic approximation of a Newton method and therefore very fast. 

• Add a final phase of pattem-by-pattern learning with uniform learning rate to fine 
tune the local curvature structure by the local penalty parameters (eq. 9). 

• Use a learning rate 1] as high as possible to keep the penalty effective. The training 
error may vary a bit, but the inclusion of the implicit penalty is more important. 

3 Cleaning 

3.1 Cleaning reviewed 

When training neural networks, one typically assumes that the data is noise-free and one 
forces the network to fit the data exactly. Even the control procedures to minimize over
fitting effects (i.e., pruning) consider the inputs as exact values. However, this assumption 
is often violated, especially in the field of financial analysis, and we are taught by the 
phenomenon of overfitting not to follow the data exactly. Clearning, as a combination of 
cleaning and learning, has been introduced in the paper of [11]. The motivation was to 
minimize overfitting effects by considering the input data as corrupted by noise whose dis
tribution has also to be learned. The Cleaning error function for the pattern t is given by 
the sum of two terms 

Eyx 1[( d)2 ( d)2] y x t' ="2 Yt - Yt + Xt - x t = E t + E t (11) 
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with xf, yt as the observed data point. In the pattem-by-pattem learning, the network 
output y( x t, w) determines the adaptation as usual, 

(12) 

We have also to memorize correction vectors &t for all input data of the training set to 
present the cleaned input Xt to the network, 

Xt = xf + &t (13) 

The update rule for the corrections, initialized with ~x~O) = 0 can be described as 

~X~T+I) (1 - 1])~X!T) - 1](Yt - yt) ~ (14) 

All the necessary quantIties, i. e. (Yt - yt) &Y~;w) are computed by typical back
propagation algorithms, anyway. We experienced, that the algorithms work well, if the 
same learning rate 1] is used for both, the weight and cleaning updates. For regression, 
cleaning forces the acceptance of a small error in x. which can in turn decrease the error in 
Y dramatically, especially in the case of outliers. Successful applications of Cleaning are 
reported in [11] and [9]. 

Although the network may learn an optimal model for the cleaned input data, there is 
no easy way to work with cleaned data on the test set. As a consequence, the model is 
evaluated on a test set with a different noise characteristic compared to the training set. We 
will later propose a combination of learning with noise and cleaning to work around this 
serious disadvantage. 

3.2 Data Noise reviewed 

Artificial noise on the input data is often used during training because it creates an infinite 
number of training examples and expands the data to empty parts of the input space. As 
a result, the tendency of learning by heart may be limited because smoother regression 
functions are produced. 

Now, we are considering again the Taylor expansion, this time applied to E (x) around 
some point x in the input space. The expected value (E (x)) is approximated by 

(E(x)} ~ ~ L E(x + &t} = E(x) + ~ L var(&(j))Hjj, (15) 
t j 

with Hjj as the diagonal elements of the Hessian Hxx of the error function with respect to 
the inputs x. Again, in eq. 15, noise on the inputs acts implicitly as a penalty term to the 
error function with the noise variances var( & (j)) operating as penalty parameters. Noise 
on the input improve generalization behavior by favoring smooth models [1]. 

The noise levels can be set to a constant value, e. g. given by a priori knowledge, or adaptive 
as described now. We will concentrate on a uniform or normal noise distribution. Then, 
the adaptive noise level ~j is estimated for each input j individually. Suppressing pattern 
indices, we define the noise levels ~j or ~J as the average residual errors: 

t). = _1 '" IOEY I, uniform residual error:.. ~ 
T t OXj 

(16) 

t)2. ___ 1 '" (OEY) 2 Gaussian residual error: .. ~ 
T t OXj 

(17) 

Actual implementations use stochastic approximation, e. g. for the uniform residual error 

€~T+1) = (1 _ ~ )~~T) + ~ I oEY I. (18) 
J T) T OXj 
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The different residual error levels can be interpreted as follows: A small level ~j may 
indicate an unimportant input j or a perfect fit of the network concerning this input j. In 
both cases, a small noise level is appropriate. On the other hand, a high value of ~j for an 
input j indicates an important but imperfectly fitted input. In this case high noise levels are 
advisable. High values of ~j lead to a stiffer regression model and may therefore increase 
the generalization perfonnance of the network. 

3.3 Cleaning with Noise 

Typically, training with noisy inputs takes a data point and adds a random variable drawn 
from a fixed or adaptive distribution. This new data point Xt is used as an input to the 
network. If we assume, that the data is corrupted by outliers and other influences, it is 
preferable to add the noise tenn to the cleaned input. For the case of Gaussian noise the 
resulting new input is: 

Xt = xf + ~Xt + ~¢, (19) 

with ¢ drawn from the nonnal distribution. The cleaning of the data leads to a corrected 
mean of the data and therefore to a more symmetric noise distribution, which also covers 
the observed data x t • 

We propose a variant which allows more complicated noise distributions: 

(20) 

with k as a random number drawn from the indices of the correction vectors (~xtlt=l , ... ,T. 
In this way we use a possibly asymmetric and/or dependent noise distribution, which still 
covers the observed data Xt by definition of the algorithm. 

One might wonder, why to disturb the cleaned input xf + ~Xt with an additional noisy 
tenn ~x k. The reason for this is, that we want to benefit from representing the whole input 
distribution to the network instead of only using one particular realization. 

4 A Unifying Approach 

4.1 The Separation of Structure and Noise 

In the previous sections we explained how the data can be separated into clean infonnation 
and unexplainable noise. Analogous, the neural network is described as a time invariant 
structure (otherwise no forecasting is possible) and a noisy part. 

data -t cleaned data + time invariant data noise 
neural network-ttime invariant parameters+parameter noise 

We propose to use cleaning and adaptive noise to separate the data and to use learning and 
stochastic search to separate the structure of the neural network. 

data ~ cleaning(neural network) + adaptive noise (neural network) 
neural network~learning (data) + stochastic search(data) 

The algorithms analyzing the data depend directly o"n the network whereas the methods 
searching for structure are directly related to the data. It should be clear that the model 
building process should combine both aspects in an alternate or simultaneous manner. The 
interaction of algorithms concerning data analysis and network structure enables the real
ization of the the concept of the Observer-Observation Dilemma. 
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The aim of the unified approach can be described, exemplary assuming here a Gaussian 
noise model, as the minimization of the error due to both, the structure and the data: 

T 

2~ I: [(Yt - y1)2 + {Xt - x1)2] -+ ~~fJ (21) 
t=l 

Combining the algorithms and approximating the cumulative gradient 9 by g, we receive 
data 

structure 

(1 - 0: )gH + O:(Yt - yt) P
WIT) - 7]g(T) -7](9t - g0-)) 

'-....-' ---......-.-
learning noise 

(22) 

The cleaning of the data by the network computes an individual correction term for each 
training pattern. The adaptive noise procedure according to eq. 20 generates a potentially 
asymmetric and dependent noise distribution which also covers the observed data. The 
implied curvature penalty, whose strength depends on the individual liability of the input 
variables, can improve the generalization performance of the neural network. 

The learning of the structure searches for time invariant parameters characterized by 
-j; L 9t = O. The parameter noise supports this exploration as a stochastic search to find 
better "global" minima. Additionally, the generalization performance may be further im
proved by the implied curvature penalty depending on the local liability of the parameters. 
Note that, although the description of the weight updates collapses to the simple form of 
eq. 4, we preferred the formula above to emphasize the analogy between the mechanism 
which handles the data and the structure. 

In searching for an optimal combination of data and parameters, the noise of both parts is 
not a disastrous failure to build a perfect model but it is an important element to control the 
interaction of data and structure. 

4.2 Pruning 
The neural network topology represents only a hypothesis of the true underlying class of 
functions. Due to possible misspecification, we may have defects of the parameter noise 
distribution. Pruning algorithms are not only a way to limit the memory of the network, but 
they also appear useful to correct the noise distribution in different ways. 

Stochastic-Pruning [2] is basically a t-test on the weights w. Weights with low testw values 
constitute candidates for pruning to cancel weights with low liability measured by the size 
of the weight divided by the standard deviation of its fluctuations. By this, we get a stabi
lization of the learning against resampling of the training data. A further weight pruning 
method is EBD, Early-Brain-Damage [10], which is based on the often cited OBD prun
ing method of [6]. In contrast to OBD, EBD allows its application before the training has 
reached a local minimum. One of the advantages of EBD over OBD is the possibility to 
perform the testing while being slidely away from a local minimum. In our training pro
cedure we propose to use noise even in the final part of learning and therefore we are only 
nearby a local minimum. Furthermore, EBD is also able to revive already pruned weights. 
Similar to Stochastic Pruning, EBD favors weights with a low rate of fluctuations. If a 
weight is pushed around by a high noise, the implicit curvature penalty would favor a flat 
minimum around this weight which leads to its elimination by EBD. 
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5 Experiments 
In a research project sponsored by the European Community we are applying the proposed 
approach to estimate the returns of 3 financial markets for each of the G7 countries subse
quently using these estimations in an asset allocation scheme to create a Markowitz-optimal 
portfolio [4]. This paper reports the 6 month forecasts of the German bond rate, which is 
one of the more difficult tasks due to the reunification of Germany and GDR. The inputs 
consist of 39 variables achieved by preprocessing 16 relevant financial time series. The 
training set covers the time from April, 1974 to December, 1991, the test set runs from J an
uary, 1992 to May, 1996. The network arcitecture consists of one hidden layer (20 neurons, 
tanh transfer function) and one linear output. First, we trained the neural network until 
convergence with pattern-by-pattern learning using a small batch size of 20 patterns (clas
sical approach). Then, we trained the network using the unified approach as described in 
section 4.1 using pattern-by-pattern learning. We compare the resulting predictions of the 
networks on the basis of four performance measures (see table). First, the hit rate counts 
how often the sign of the return of the bond has been correctly predicted. As to the other 
measures, the step from the forecast model to a trading system is here kept very simple. If 
the output is positive, we buy shares of the bond, otherwise we sell them. The potential 
realized is the ratio of the return to the maximum possible return over the test (training) 
set. The annualized return is the average yearly profit of the trading systems. Our approach 
turns out to be superior: we almost doubled the annualized return from 4.5% to 8.5% on 
the test set. The figure compares the accumulated return of the two approaches on the test 
set. The unified approach not only shows a higher profitability, but also has by far a less 
maximal draw down. 

35i-- --~---.., - - , - -. - -. - . 

I approach II our classical 30\ ~~~/.// -

:
25r .3 

!!!20 

~'5'JI " 1i I " '- " j 'O' ,'. . ., . . . ::. .... . ..... .. .... 

I 

hit rate 81%(96%) 66%(93%) 

realized potential 75%(100%) 44%(96%) 

annualized return 8.5% (11.2%) 4.5%(10.1%) 
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