
The Observer-Observation Dilemma
in Neuro-Forecasting

Hans Georg Zimmermann
SiemensAG

Corporate Technology
D-81730 Munchen, Germany

Georg.Zimmermann@mchp.siemens.de

Ralph N euneier
Siemens AG

Corporate Technology
D-81730 Munchen, Germany

Ralph.Neuneier@mchp.siemens.de

Abstract

We explain how the training data can be separated into clean informa
tion and unexplainable noise. Analogous to the data, the neural network
is separated into a time invariant structure used for forecasting, and a
noisy part. We propose a unified theory connecting the optimization al
gorithms for cleaning and learning together with algorithms that control
the data noise and the parameter noise. The combined algorithm allows
a data-driven local control of the liability of the network parameters and
therefore an improvement in generalization. The approach is proven to
be very useful at the task of forecasting the German bond market.

1 Introduction: The Observer-Observation Dilemma

Human beings believe that they are able to solve a psychological version of the Observer
Observation Dilemma. On the one hand, they use their observations to constitute an under
standing of the laws of the world, on the other hand, they use this understanding to evaluate
the correctness of the incoming pieces of information. Of course, as everybody knows,
human beings are not free from making mistakes in this psychological dilemma. We en
counter a similar situation when we try to build a mathematical model using data. Learning
relationships from the data is only one part of the model building process. Overrating this
part often leads to the phenomenon of overfitting in many applications (especially in eco
nomic forecasting). In practice, evaluation of the data is often done by external knowledge,
i. e. by optimizing the model under constraints of smoothness and regularization [7]. If we
assume, that our model summerizes the best knowledge of the system to be identified, why
should we not use the model itself to evaluate the correctness of the data? One approach to
do this is called Clearning [11]. In this paper, we present a unified approach of the interac
tion between the data and a neural network (see also [8]). It includes a new symmetric view
on the optimization algorithms, here learning and cleaning, and their control by parameter
and data noise.

The Observer-Observation Dilemma in Neuro-Forecasting 993

2 Learning

2.1 Learning reviewed

We are especially interested in using the output of a neural network y(x, w), given the
input pattern, x, and the weight vector, w, as a forecast of financial time series. In the
context of neural networks learning nonnally means the minimization of an error function
E by changing the weight vector w in order to achieve good generalization performance.
Typical error functions can be written as a sum of individual terms over all T training
patterns, E = ~ 'L,;=1 E t . For example, the maximum-likelihood principle leads to

E t = 1/2 (y(x, w) - yt)2 , (1)

with yt as the given target pattern. If the error function is a nonlinear function of the pa
rameters, learning has to be done iteratively by a search through the weight space, changing
the weights from step T to T + 1 according to:

(2)

There are several algorithms for choosing the weight increment ~W(T) , the most easiest
being gradient descent. After each presentation of an input pattern, the gradient gt :=
VEt Iw of the error function with respect to the weights is computed. In the batch version
of gradient descent the increments are based on all training patterns

1 T

~W(T) = -"1g = -"1 T L gt,

t=l
(3)

whereas the pattern-by-pattern version changes the weights after each presentation of a
pattern Xt (often randomly chosen from the training set):

(4)

The learning rate "1 is typically held constant or follows an annealing procedure during
training to assure convergence. Our experiments have shown that small batches are most
useful, especially in combination with Vario-Eta, a stochastic approximation of a Quasi
Newton method [3]:

N

~W(T) = - "1 . ~ L gt, J + 'L,(gt - g)2 N t=l
(5)

with and N ~ 20. Learning pattern-by-pattern or with small batches can be viewed as a
stochastic search process because we can write the weight increments as:

(6)

These increments consist of the terms 9 with a drift to a local minimum and of noise terms
(k 'L,~ 1 gt - g) disturbing this drift.

2.2 Parameter Noise as an Implicit Penalty Function

Consider the Taylor expansion of E (w) around some point w in the weight space

1
E(w + ~w) = E(w) + VE ~w + 2~W'H ~w (7)

994 H. G. Zimmermann and R. Neuneier

with H as the Hessian of the error function. Assume a given sequence of T disturbance
vectors ~ Wt, whose elements ~ Wt (i) are identically, independently distributed (i .i.d.) with
zero mean and variance (row-)vector var(~wi) to approximate the expectation (E(w) by

1", 1", .
(E(w) ~ T L...J E(w + ~Wt) = E(w) + :2 L...J var(~w(z))Hii' (8)

t i

with Hii as the diagonal elements of H. In eq. 8, noise on the weights acts implicitly as a
penalty term to the error function given by the second derivatives H ii . The noise variances
var(~ w(i)) operate as penalty parameters. As a result of this flat minima solutions which
may be important for achieving good generalization performance are favored [5].

Learning pattern-by-pattem introduces such noise in the training procedure i.e., ~ Wt =
-1] • gt· Close to convergence, we can assume that gt is i.i.d. with zero mean and variance
vector var(gi) so that the expected value can be approximated by

TJ2 82 E
(E(w) ~ E(w) + - Lvar(gd-8 2'

2 . Wi
I

(9)

This type of learning introduces to a local penalty parameter var(~ w (i)), characterizing
the stability of the weights w = [Wdi=l, ... ,k.

The noise effects due to Vario-Eta learning ~wt(i) = -R . gti leads to

1]2 82 E
(E(w) ~ E(w) + 2 :L 8w~'

i I

(10)

By canceling the term var(gi) in eq. 9, Vario-Eta achieves a simplified uniform penalty
parameter, which depends only on the learning rate 1]. Whereas pattern-by-pattern learning
is a slow algorithm with a locally adjusted penalty control, Vario-Eta is fast only at the cost
of a simplified uniform penalty term. We summarize this section by giving some advice on
how to learn to flat minima solutions:

• Train the network to a minimal training error solution with Vario-Eta, which is a
stochastic approximation of a Newton method and therefore very fast.

• Add a final phase of pattem-by-pattern learning with uniform learning rate to fine
tune the local curvature structure by the local penalty parameters (eq. 9).

• Use a learning rate 1] as high as possible to keep the penalty effective. The training
error may vary a bit, but the inclusion of the implicit penalty is more important.

3 Cleaning

3.1 Cleaning reviewed

When training neural networks, one typically assumes that the data is noise-free and one
forces the network to fit the data exactly. Even the control procedures to minimize over
fitting effects (i.e., pruning) consider the inputs as exact values. However, this assumption
is often violated, especially in the field of financial analysis, and we are taught by the
phenomenon of overfitting not to follow the data exactly. Clearning, as a combination of
cleaning and learning, has been introduced in the paper of [11]. The motivation was to
minimize overfitting effects by considering the input data as corrupted by noise whose dis
tribution has also to be learned. The Cleaning error function for the pattern t is given by
the sum of two terms

Eyx 1[(d)2 (d)2] y x t' ="2 Yt - Yt + Xt - x t = E t + E t (11)

The Observer-Observatio·n Dilemma in Neuro-Forecasting 995

with xf, yt as the observed data point. In the pattem-by-pattem learning, the network
output y(x t, w) determines the adaptation as usual,

(12)

We have also to memorize correction vectors &t for all input data of the training set to
present the cleaned input Xt to the network,

Xt = xf + &t (13)

The update rule for the corrections, initialized with ~x~O) = 0 can be described as

~X~T+I) (1 - 1])~X!T) - 1](Yt - yt) ~ (14)

All the necessary quantIties, i. e. (Yt - yt) &Y~;w) are computed by typical back
propagation algorithms, anyway. We experienced, that the algorithms work well, if the
same learning rate 1] is used for both, the weight and cleaning updates. For regression,
cleaning forces the acceptance of a small error in x. which can in turn decrease the error in
Y dramatically, especially in the case of outliers. Successful applications of Cleaning are
reported in [11] and [9].

Although the network may learn an optimal model for the cleaned input data, there is
no easy way to work with cleaned data on the test set. As a consequence, the model is
evaluated on a test set with a different noise characteristic compared to the training set. We
will later propose a combination of learning with noise and cleaning to work around this
serious disadvantage.

3.2 Data Noise reviewed

Artificial noise on the input data is often used during training because it creates an infinite
number of training examples and expands the data to empty parts of the input space. As
a result, the tendency of learning by heart may be limited because smoother regression
functions are produced.

Now, we are considering again the Taylor expansion, this time applied to E (x) around
some point x in the input space. The expected value (E (x)) is approximated by

(E(x)} ~ ~ L E(x + &t} = E(x) + ~ L var(&(j))Hjj, (15)
t j

with Hjj as the diagonal elements of the Hessian Hxx of the error function with respect to
the inputs x. Again, in eq. 15, noise on the inputs acts implicitly as a penalty term to the
error function with the noise variances var(& (j)) operating as penalty parameters. Noise
on the input improve generalization behavior by favoring smooth models [1].

The noise levels can be set to a constant value, e. g. given by a priori knowledge, or adaptive
as described now. We will concentrate on a uniform or normal noise distribution. Then,
the adaptive noise level ~j is estimated for each input j individually. Suppressing pattern
indices, we define the noise levels ~j or ~J as the average residual errors:

t). = _1 '" IOEY I, uniform residual error:.. ~
T t OXj

(16)

t)2. ___ 1 '" (OEY) 2 Gaussian residual error: .. ~
T t OXj

(17)

Actual implementations use stochastic approximation, e. g. for the uniform residual error

€~T+1) = (1 _ ~)~~T) + ~ I oEY I. (18)
J T) T OXj

996 H. G. Zimmennann and R. Neuneier

The different residual error levels can be interpreted as follows: A small level ~j may
indicate an unimportant input j or a perfect fit of the network concerning this input j. In
both cases, a small noise level is appropriate. On the other hand, a high value of ~j for an
input j indicates an important but imperfectly fitted input. In this case high noise levels are
advisable. High values of ~j lead to a stiffer regression model and may therefore increase
the generalization perfonnance of the network.

3.3 Cleaning with Noise

Typically, training with noisy inputs takes a data point and adds a random variable drawn
from a fixed or adaptive distribution. This new data point Xt is used as an input to the
network. If we assume, that the data is corrupted by outliers and other influences, it is
preferable to add the noise tenn to the cleaned input. For the case of Gaussian noise the
resulting new input is:

Xt = xf + ~Xt + ~¢, (19)

with ¢ drawn from the nonnal distribution. The cleaning of the data leads to a corrected
mean of the data and therefore to a more symmetric noise distribution, which also covers
the observed data x t •

We propose a variant which allows more complicated noise distributions:

(20)

with k as a random number drawn from the indices of the correction vectors (~xtlt=l , ... ,T.
In this way we use a possibly asymmetric and/or dependent noise distribution, which still
covers the observed data Xt by definition of the algorithm.

One might wonder, why to disturb the cleaned input xf + ~Xt with an additional noisy
tenn ~x k. The reason for this is, that we want to benefit from representing the whole input
distribution to the network instead of only using one particular realization.

4 A Unifying Approach

4.1 The Separation of Structure and Noise

In the previous sections we explained how the data can be separated into clean infonnation
and unexplainable noise. Analogous, the neural network is described as a time invariant
structure (otherwise no forecasting is possible) and a noisy part.

data -t cleaned data + time invariant data noise
neural network-ttime invariant parameters+parameter noise

We propose to use cleaning and adaptive noise to separate the data and to use learning and
stochastic search to separate the structure of the neural network.

data ~ cleaning(neural network) + adaptive noise (neural network)
neural network~learning (data) + stochastic search(data)

The algorithms analyzing the data depend directly o"n the network whereas the methods
searching for structure are directly related to the data. It should be clear that the model
building process should combine both aspects in an alternate or simultaneous manner. The
interaction of algorithms concerning data analysis and network structure enables the real
ization of the the concept of the Observer-Observation Dilemma.

The Observer-Observation Dilemma in Neuro-Forecasting 997

The aim of the unified approach can be described, exemplary assuming here a Gaussian
noise model, as the minimization of the error due to both, the structure and the data:

T

2~ I: [(Yt - y1)2 + {Xt - x1)2] -+ ~~fJ (21)
t=l

Combining the algorithms and approximating the cumulative gradient 9 by g, we receive
data

structure

(1 - 0:)gH + O:(Yt - yt) P
WIT) - 7]g(T) -7](9t - g0-))

'-....-' ---......-.-
learning noise

(22)

The cleaning of the data by the network computes an individual correction term for each
training pattern. The adaptive noise procedure according to eq. 20 generates a potentially
asymmetric and dependent noise distribution which also covers the observed data. The
implied curvature penalty, whose strength depends on the individual liability of the input
variables, can improve the generalization performance of the neural network.

The learning of the structure searches for time invariant parameters characterized by
-j; L 9t = O. The parameter noise supports this exploration as a stochastic search to find
better "global" minima. Additionally, the generalization performance may be further im
proved by the implied curvature penalty depending on the local liability of the parameters.
Note that, although the description of the weight updates collapses to the simple form of
eq. 4, we preferred the formula above to emphasize the analogy between the mechanism
which handles the data and the structure.

In searching for an optimal combination of data and parameters, the noise of both parts is
not a disastrous failure to build a perfect model but it is an important element to control the
interaction of data and structure.

4.2 Pruning
The neural network topology represents only a hypothesis of the true underlying class of
functions. Due to possible misspecification, we may have defects of the parameter noise
distribution. Pruning algorithms are not only a way to limit the memory of the network, but
they also appear useful to correct the noise distribution in different ways.

Stochastic-Pruning [2] is basically a t-test on the weights w. Weights with low testw values
constitute candidates for pruning to cancel weights with low liability measured by the size
of the weight divided by the standard deviation of its fluctuations. By this, we get a stabi
lization of the learning against resampling of the training data. A further weight pruning
method is EBD, Early-Brain-Damage [10], which is based on the often cited OBD prun
ing method of [6]. In contrast to OBD, EBD allows its application before the training has
reached a local minimum. One of the advantages of EBD over OBD is the possibility to
perform the testing while being slidely away from a local minimum. In our training pro
cedure we propose to use noise even in the final part of learning and therefore we are only
nearby a local minimum. Furthermore, EBD is also able to revive already pruned weights.
Similar to Stochastic Pruning, EBD favors weights with a low rate of fluctuations. If a
weight is pushed around by a high noise, the implicit curvature penalty would favor a flat
minimum around this weight which leads to its elimination by EBD.

998 H. G. Zimmermann and R. Neuneier

5 Experiments
In a research project sponsored by the European Community we are applying the proposed
approach to estimate the returns of 3 financial markets for each of the G7 countries subse
quently using these estimations in an asset allocation scheme to create a Markowitz-optimal
portfolio [4]. This paper reports the 6 month forecasts of the German bond rate, which is
one of the more difficult tasks due to the reunification of Germany and GDR. The inputs
consist of 39 variables achieved by preprocessing 16 relevant financial time series. The
training set covers the time from April, 1974 to December, 1991, the test set runs from J an
uary, 1992 to May, 1996. The network arcitecture consists of one hidden layer (20 neurons,
tanh transfer function) and one linear output. First, we trained the neural network until
convergence with pattern-by-pattern learning using a small batch size of 20 patterns (clas
sical approach). Then, we trained the network using the unified approach as described in
section 4.1 using pattern-by-pattern learning. We compare the resulting predictions of the
networks on the basis of four performance measures (see table). First, the hit rate counts
how often the sign of the return of the bond has been correctly predicted. As to the other
measures, the step from the forecast model to a trading system is here kept very simple. If
the output is positive, we buy shares of the bond, otherwise we sell them. The potential
realized is the ratio of the return to the maximum possible return over the test (training)
set. The annualized return is the average yearly profit of the trading systems. Our approach
turns out to be superior: we almost doubled the annualized return from 4.5% to 8.5% on
the test set. The figure compares the accumulated return of the two approaches on the test
set. The unified approach not only shows a higher profitability, but also has by far a less
maximal draw down.

35i-- --~---.., - - , - -. - -. - .

I approach II our classical 30\ ~~~/.// -

:
25r .3

!!!20

~'5'JI " 1i I " '- " j 'O' ,'. . ., . . . ::.

I

hit rate 81%(96%) 66%(93%)

realized potential 75%(100%) 44%(96%)

annualized return 8.5% (11.2%) 4.5%(10.1%)

I .{-- '0· - 20-" 30 40 - sO - -So
11 ...

References
[I] Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1994.

[2] W. Finnoff, F. Hergert, and H. G. Zimmennann. Improving generalization perfonnance by
nonconvergentmodel selection methods. In proc. of ICANN-92, 1992.

[3] W. Finnoff, F. Hergert, and H. G. Zimmennann. Neuronale Lemverfahren mit variabler Schritt
weite. 1993. Tech. report, Siemens AG.

[4] P. Herve, P. Nairn, and H. G. Zimmennann. Advanced Adaptive Architectures for Asset Allo-
cation: A Trial Application. In Forecasting Financial Markets, 1996.

[5] S. Hochreiter and J. Schmid huber. Flat minima. Neural Computation, 9(1): 1-42, 1997.

[6] Y. Ie Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. NIPS*89, 1990.

[7] J. E. Moody and T. S. Rognvaldsson. Smoothing regularizers for projective basis function
networks. NIPS 9, 1997.

[8] R. Neuneier and H. G. Zimmennann. How to Train Neural Networks. In Tricks of the Trade:
How to make algorithms really to work. Springer Verlag, Berlin, 1998.

[9] B. Tang, W. Hsieh, and F. Tangang. Cleaming neural networks with continuity constraints for
prediction of noisy time series. ICONIP '96, 1996.

[10] V. Tresp, R. Neuneier, and H. G. Zimmennann. Early brain damage. NIPS 9, 1997.

[II] A. S. Weigend, H. G. Zimmennann, and R. Neuneier. Cleaming. Neural Networks in Financial
Engineering, (NNCM95), 1995.

