
Generalized Prioritized Sweeping 

David Andre Nir Friedman Ronald Parr 
Computer Science Division, 387 Soda Hall 

University of California, Berkeley, CA 94720 
{dandre,nir,parr}@cs.berkeley.edu 

Abstract 
Prioritized sweeping is a model-based reinforcement learning method 
that attempts to focus an agent's limited computational resources to 
achieve a good estimate of the value of environment states. To choose ef
fectively where to spend a costly planning step, classic prioritized sweep
ing uses a simple heuristic to focus computation on the states that are 
likely to have the largest errors. In this paper, we introduce generalized 
prioritized sweeping, a principled method for generating such estimates 
in a representation-specific manner. This allows us to extend prioritized 
sweeping beyond an explicit, state-based representation to deal with com
pact representations that are necessary for dealing with large state spaces. 
We apply this method for generalized model approximators (such as 
Bayesian networks), and describe preliminary experiments that compare 
our approach with classical prioritized sweeping. 

1 Introduction 
In reinforcement learning, there is a tradeoff between spending time acting in the envi
ronment and spending time planning what actions are best. Model-free methods take one 
extreme on this question- the agent updates only the state most recently visited. On the 
other end of the spectrum lie classical dynamic programming methods that reevaluate the 
utility of every state in the environment after every experiment. Prioritized sweeping (PS) 
[6] provides a middle ground in that only the most "important" states are updated, according 
to a priority metric that attempts to measure the anticipated size of the update for each state. 
Roughly speaking, PS interleaves perfonning actions in the environment with propagating 
the values of states. After updating the value of state s, PS examines all states t from which 
the agent might reach s in one step and assigns them priority based on the expected size of 
the change in their value. 

A crucial desideratum for reinforcement learning is the ability to scale-up to complex 
domains. For this, we need to use compact ( or generalizing) representations of the model and 
the value function. While it is possible to apply PS in the presence of such representations 
(e.g., see [1]), we claim that classic PS is ill-suited in this case. With a generalizing model, 
a single experience may affect our estimation of the dynamics of many other states. Thus, 
we might want to update the value of states that are similar, in some appropriate sense, to 
s since we have a new estimate of the system dynamics at these states. Note that some of 
these states might never have been reached before and standard PS will not assign them a 
priority at all. 
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In this paper, we present generalized prioritized sweeping (GenPS), a method that utilizes 
a fonnal principle to understand and extend PS and extend it to deal with parametric 
representations for both the model and the value function. If GenPS is used with an explicit 
state-space model and value function representation, an algorithm similar to the original 
(classic) PS results. When a model approximator (such as a dynamic Bayesian network 
[2]) is used, the resulting algorithm prioritizes the states of the environment using the 
generalizations inherent in the model representation. 

2 The Basic Principle 

We assume the reader is familiar with the basic concepts of Markov Decision Processes 
(MDPs); see, for example, [5]. We use the following notation: A MDP is a 4-tuple, 
(S,A,p,r) where S is a set of states, A is a set of actions, p(t I s,a) is a transition 
model that captures the probability of reaching state t after we execute action a at state 
s, and r( s) is a reward function mapping S into real-valued rewards. In this paper, we 
focus on infinite-horizon MDPs with a discount factor ,. The agent's aim is to maximize 
the expected discounted total reward it will receive. Reinforcement learning procedures 
attempt to achieve this objective when the agent does not know p and r. 

A standard problem in model-based reinforcement learning is one of balancing between 
planning (Le., choosing a policy) and execution. Ideally, the agent would compute the 
optimal value function for its model of the environment each time the model changes. This 
scheme is unrealistic since finding the optimal policy for a given model is computationally 
non-trivial. Fortunately, we can approximate this scheme if we notice that the approximate 
model changes only slightly at each step. Thus, we can assume that the value function 
from the previous model can be easily "repaired" to reflect these changes. This approach 
was pursued in the DYNA [7] framework, where after the execution of an action, the 
agent updates its model of the environment, and then performs some bounded number 
of value propagation steps to update its approximation of the value function . Each vaiue
propagation step locally enforces the Bellman equation by setting V(s) ~ maxaEA Q(s, a), 
where Q(s,a) = f(s) + ,Ls'ESP(s' I s,a)V(s'), p(s' I s,a) and f(s) are the agent's 
approximation of the MDP, and V is the agent's approximation of the value function. 

This raises the question of which states should be updated. In this paper we propose the 
following general principle: 

GenPS Principle: Update states where the approximation of the value 
function will change the most. That is, update the states with the largest 
Bellmanerror,E(s) = IV(s) -maxaEAQ(s,a)l. 

The motivation for this principle is straightforward. The maximum Bellman error can be 
used to bound the maximum difference between the current value function, V (s) and the 
optimal value function, V"'(s) [9]. This difference bounds the policy loss, the difference 
between the expected discounted reward received under the agent's current policy and the 
expected discounted reward received under the optimal policy. 

To carry out this principle we have to recognize when the Bellman error at a state changes. 
This can happen at two different stages. First, after the agent updates its model of the world, 
new discrepancies between V (s) and maxa Q( s, a) might be introduced, which can increase 
the Bellman error at s. Second, after the agent performs some value propagations, V is 
changed, which may introduce new discrepancies. 

We assume that the agent maintains a value function and a model that are parameterized 
by Dv and D M . (We will sometimes refer to the vector that concatenates these vectors 
together into a single, larger vector simply as D.) When the agent observes a transition from 
state s to s' under action a, the agent updates its environment model by adjusting some 
of the parameters in D M. When perfonning value-propagations, the agent updates V by 
updating parameters in Dv. A change in any of these parameters may change the Bellman 
error at other states in the model. We want to recognize these states without explicitly 
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computing the Bellman error at each one. Formally, we wish to estimate the change in 
error, I~E(B) I, due to the most recent change ~() in the parameters. 

We propose approximating I~E(8) 1 by using the gradient of the right hand side of the 

Bellman equation (i.e. maxa Q(8,a). Thus, we have: I~E(s)1 ~ lV'maxa Q(8,a) . ~()I 
which estimates the change in the Bellman error at state 8 as a function of the change in 
Q( 8, a). The above still requires us to differentiate over a max, which is not differentiable. 
In general, we want to to overestimate the change, to avoid "starving" states with non
negligible error. Thus, we use the following upper bound: 1V'(maxa Q(8, a)) . ~81 ~ 
maxa IV'Q(s,a). ~81· 

We now define the generalized prioritized sweeping procedure. The procedure maintains 
a priority queue that assigns to each state 8 a priority,pri( 8). After making some changes, we 
can reassign priorities by computing an approximation of the change in the value function. 

Ideally, this is done using a procedure that implements the following steps: 

procedure update-priorities (&) 
for all s E S pri(s) +- pri(s) + maxa IV'Q(s, a) . &1. 

Note that when the above procedure updates the priority for a state that has an existing 
priority, the priorities are added together. This ensures that the priority being kept is an 
overestimate of the priority of each state, and thus, the procedure will eventually visit all 
states that require updating. 

Also, in practice we would not want to reconsider the priority of all states after an update 
(we return to this issue below). 

Using this procedure, we can now state the general learning procedure: 

procedure GenPS 0 
loop 

perform an action in the environment 
update the model; let & be the change in () 
call update-priorities( &) 
while there is available computation time 

let smax = arg maxs pri( s) 
perform value-propagation for V(smax); let & be the change in () 
call update-priorities( &) 
pri(smax) +- W(smax) - maxa Q(smax,a)11 

Note that the GenPS procedure does not determine how actions are selected. This issue, 
which involves the problem of exploration, is orthogonal to the our main topic. Standard 
approache!;, such as those described in [5, 6, 7], can be used with our procedure. 

This abstract description specifies neither how to update the model, nor how to update the 
value function in the value-propagation steps. Both of these depend on the choices made 
in the corresponding representation of the model and the value function. Moreover, it is 
clear that in problems that involve a large state space, we cannot afford to recompute the 
priority of every state in update-priorities. However, we can simplify this computation 
by exploiting sparseness in the model and in the worst case we may resort to approximate 
methods for finding the states that receive high priority after each change. 

3 Explicit, State-based Representation 

In this section we briefly describe the instantiation of the generalized procedure when the 
rewards, values, and transition probabilities are explicitly modeled using lookup tables. In 
this representation, for each state 8, we store the expected reward at 8, denoted by Of(s)' the 
estimated value at 8, denoted by Bv (s), and for each action a and state t the number of times 
the execution of a at 8 lead to state t, denoted NS,Q.,t. From these transition counts we can 

I In general, this will assign the state a new priority of 0, unless there is a self loop. In this case it 
will easy to compute the new Bellman error as a by-product of the value propagation step. 
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reconstruct the transition probabilities pACt I 8, a) = N •. a.! +N~ ! a . t where NO are 
" N +NO ' 8,a,t W t' ",a ,t' " , a , t l 

fictional counts that capture our prior information about the system's dynamics.2 After each 
step in the worJd, these reward and probability parameters are updated in the straightforward 
manner. Value propagation steps in this representation set 8Y(t) to the right hand side of 
the Bellman equation. 

To apply the GenPS procedure we need to derive the gradient of the Bellman equation 
for two situations: (a) after a single step in the environment, and (b) after a value update. 

In case (a), the model changes after performing action 8~t . In this case, it is easy to 

verify that V'Q(s,a) 'do = dOr(t) + t t N.}t+N~.a.t (V(t) - 2:~p(t' I s,a)V(t')), and 

that V' Q( s', a') . do = 0 if s' =1= s or a' =1= a. Thus, s is the only state whose priority 
changes. 

In case (b), the value function changes after updating the value of a state t. In this case, 
V'Q(s, a) ·do = ,pet I s, a)l1ov(t)' It is easy to see that this is nonzero only ift is reachable 
from 8. In both cases, it is straightforward to locate the states where the Bellman error 
might have have changed, and the computation of the new priority is more efficient than 
computing the Bellman-error.3 

Now we can relate GenPS to standard prioritized sweeping. The PS procedure has the 
general form of this application of GenPS with three minor differences. First, after per
forming a transition s~t in the environment, PS immediately performs a value propagation 
for state s, while GenPS increments the priority of s. Second, after performing a value 
propagation for state t, PS updates the priority of states s that can reach t with the value 
maxa p( tis, a) ./1y( t). The priority assigned by GenPS is the same quantity multiplied by 
,. Since PS does not introduce priorities after model changes, this multiplicative constant 
does not change the order of states in the queue. Thirdly, GenPS uses addition to combine 
the old priority of a state with a new one, which ensures that the priority is indeed an upper 
bound. In contrast, PS uses max to combine priorities. 

This discussion shows that PS can be thought of as a special case of GenPS when the 
agent uses an explicit, state-based representation. As we show in the next section, when 
the agent uses more compact representations, we get procedures where the prioritization 
strategy is quite different from that used in PS. Thus, we claim that classic PS is desirable 
primarily when explicit representations are used. 

4 Factored Representation 

We now examine a compact representation of p( s' I s, a) that is based on dynamic Bayesian 
networks (DBNs) [2]. DBNs have been combined with reinforcement learning before in 
[8], where they were used primarily as a means getting better generalization while learning. 
We will show that they also can be used with prioritized sweeping to focus the agent's 
attention on groups of states that are affected as the agent refines its environment model. 

We start by assuming that the environment state is described by a set of random variables, 
XI, . .. , X n· For now, we assume that each variable can take values from a finite set 
Val(Xi). An assignment of values XI, .• • , Xn to these variables describes a particular 
environment state. Similarly, we assume that the agent's action is described by random 
variables AI, ... ,Ak . To model the system dynamics, we have to represent the probability 
of transitions s~t, where sand t are two assignments to XI, .. . , Xn and a is an assignment 
to AI, ... ,Ak • To simplify the discussion, we denote by Yi, .. . , Yn the agent's state after 

2Formally, we are using multinomial Dirichlet priors. See, for example, [4] for an introduction to 
these Bayesian methods. 

3 Although ~~(s .a ) involves a summation over all states, it can be computed efficiently. To see 
.. ,a ,t 

this, note that the summation is essentially the old value of Q( s, a) (minus the immediate reward) 
which can be retained in memory. 
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the action is executed (e.g., the state t). Thus, p(t I s,a) is represented as a conditional 
probability P(YI, ... , Yn I XI, ... ,Xn , AI , ... ,Ak). 

A DBN model for such a conditional distribution consists of two components. The 
first is a directed acyclic graph where each vertex is labeled by a random variable and in 
which the vertices labeled XI, . .. ,Xn and AI, .. . , Ak are roots. This graph speoifies the 
factorization of the conditional distribution: 

n 

P(Yi, ... , Yn I XI'· .. ' X n , AI,···, Ak) = II P(Yi I Pai), (1) 
i=I 

where Pai are the parents of Yi in the graph. The second component of the DBN model is 
a description of the conditional probabilities P(Yi I Pai). Together, these two components 
describe a unique conditional distribution. The simplest representation of P(Yi I Pai) is a 
table that contains a parameter (}i ,y,z = P(Yi = y I Pai = z) for each possible combination 
of y E Val(Yi) and z E Val(Pai) (note that z is a joint assignment to several random 
variables). It is easy to see that the "density" of the DBN graph determines the number of 
parameters needed. In particular, a complete graph, to which we cannot add an arc without 
violating the constraints, is equivalent to a state-based representation in terms of the number 
of parameters needed. On the other hand, a sparse graph requires few parameters. 

In this paper, we assume that the learneris supplied with the DBN structure and only has to 
learn the conditional probability entries. It is often easy to assess structure information from 
experts even when precise probabilities are not available. As in the state-based representa
tion, we learn the parameters using Dirichlet priors for each multinomial distribution [4] . 
In this method, we assess the conditional probability (}i,y,z using prior knowledge and the 
frequency of transitions observed in the past where Yi = y among those transitions where 
Pai = z. Learning amounts to keeping counts Ni ,y,z that record the number of transitions 
where Yi = y and Pai = z for each variable Yi and values y E Val(Yi) and z E Val(Pai). 
Our prior knowledge is represented by fictional counts Np,y,z. Then we estimate probabil-

. . . h ~ I LI - N; ,1I ,z+N?,y ,z h N· -" N · NO ltles USIng t e 10rmu a Ui,y,z - N;,. , z ' W ere ~, ' ,z - L....,y' t,y',z + i,y' ,z· 
We now identify which states should be reconsidered after we update the DBN parameters. 

Recall that this requires estimating the term V Q( s, a) ./1n. Since!!:.o is sparse, after making 

the transition s* ~t*, we have that VQ(s, a) . !!:.O = 2:i a~Q(s:a). ' where yi and zi are the 
I,V i '%i 

assignments to Yi and Pai, respectively, in s* ~t*. (Recall that s*, a* and t* jointly assign 
values to all the variables in the DBN.) 

We say that a transition s~t is consistent with an assignment X = x for a vector of 
random variables X, denoted (s,a, t) F= (X = x), if X is assigned the value x in s~t. 
We also need a similar notion for a partial description of a transition. We say that s and 
a are consistent with X = x, denoted (s,a,·) F= (X = x), if there is a t such that 
(s, a, t) F= (X = x). 

Using this notation, we can show that if (s, a, .) F (Pai = zi), then 

8Q(s, a) 
= -::Nt-'-'~'-': [8, .• : .,: t(,.J~.: .': p(t I s, a)1l(t) - t(, .~I=': p(t I s, a)1l(t)] 

and if s, a are inconsistent with Pai = zi, then aa:.(8:a). = o. 
""i 'Z i 

This expression shows that if s is similar to s* in that both agree on the values they assign 
to the parents of some Yi (i.e., (s, a*) is consistent with zi), then the priority of s would 
change after we update the model. The magnitude of the priority change depends upon both 
the similarity of sand s* (i.e. how many of the terms in VQ(s, a) · !!:'o will be non-zero), 
and the value of the states that can be reached from s. 
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Figure 1: (a) The maze used in the experiment. S marks the start space, G the goal state, and 1, 2 
and 3 are the three flags the agent has to set to receive the reward. (b) The DBN structure that captures 
the independencies in this domain. (c) A graph showing the performance of the three procedures on 
this example. PS is GenPS with a state-based model, PS+factored is the same procedure but with a 
factored model, and GenPS exploits the factored model in prioritization. Each curve is the average 
of 5 runs. 

The evaluation of 8~(8:a). requires us to sum over a subset of the states -namely, those 
1,1Ii .z, 

states t that are consistent with zi. Unfortunately, in the worst case this will be a large 
fragment of the state space. If the number of environment states is not large, then this might 
be a reasonable cost to pay for the additional benefits of GenPS. However, this might be a 
burdensome when we have a large state space, which are the cases where we expect to gain 
the most benefit from using generalized representations such as DBN. 

In these situations, we propose a heuristic approach for estimating V'Q(s, a)~ without 
summing over large numbers of states for computing the change of priority for each possible 
state. This can be done by finding upper bounds on or estimates of 8~( 8:a ).. Once we 

I,ll, ' %i 

have computed these estimates, we can estimate the priority change for each state s. We 
use the notation s '"Vi s* if sand s* both agree on the assignment to Pai . If Ci is an upper 

bound on (or an estimate of) 18~~~:t:: I, we have that IV'Q(8, a)/loM 1 ~ Li:s~iS. C i . 

Thus, to evaluate the priority of state s, we simply find how "similar" it is to s*. Note 
that it is relatively straightforward to use this equation to enumerate all the states where the 
priority change might be large. Finally, we note that the use of a DBN as a model does not 
change the way we update priorities after a value propagation step. If we use an explicit 
table of values, then we would update priorities as in the previous section. If we use a 
compact description of the value function, then we can apply GenPS to get the appropriate 
update rule. 

S An Experiment 

We conducted an experiment to evaluate the effect of using GenPS with a generalizing 
model. We used a maze domain similar to the one described in [6]. The maze, shown 
in Figure 1 (a), contains 59 cells, and 3 binary flags, resulting in 59 x 23 = 472 possible 
states. Initially the agent is at the start cell (marked by S) and the flags are reset. The 
agent has four possible actions, up, down, left, and right, that succeed 80% of the time, 
and 20% of the time the agent moves in an unintended perpendicular direction. The i'th 
flag is set when the agent leaves the cell marked by i. The agent receives a reward when 
it arrives at the goal cell (marked by G) and all of the flags are set. In this situation, any 
action resets the game. As noted in [6], this environment exhibits independencies. Namely, 
the probability of transition from one cell to another does not depend on the flag settings. 
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These independencies can be captured easily by the simple DBN shown in Figure I(b) Our 
experiment is designed to test the extent to which GenPS exploits the knowledge of these 
independencies for faster learning. 

We tested three procedures. The first is GenPS, which uses an explicit state-based 
model. As explained above, this variant is essentially PS. The second procedure uses a 
factored model of the environment for learning the model parameters, but uses the same 
prioritization strategy as the first one. The third procedure uses the GenPS prioritization 
strategy we describe in Section 4. All three procedures use the Boltzman exploration 
strategy (see for example [5]). Finally, in each iteration these procedures process at most 
10 states from the priority queue. 

The results are shown in Figure l(c). As we can see, the GenPS procedure converged 
faster than the procedures that used classic PS. As we can see, by using the factored model 
we get two improvements. The first improvement is due to generalization in the model. 
This allows the agent to learn a good model of its environment after fewer iterations. This 
explains why PS+factored converges faster than PS. The second improvement is due to 
the better prioritization strategy. This explains the faster convergence of GenPS. 

6 Discussion 

We have presented a general method for approximating the optimal use of computational 
resources during reinforcement learning. Like classic prioritized sweeping, our method 
aims to perform only the most beneficial value propagations. By using the gradient of the 
Bellman equation our method generalizes the underlying principle in prioritized sweeping. 
The generalized procedure can then be applied not only in the explicit, state-based case, 
but in cases where approximators are used for the model. The generalized procedure also 
extends to cases where a function approximator (such as that discussed in [3]) is used for 
the value function, and future work will empirically test this application of GenPS. We are 
currently working on applying GenPS to other types of model and function approximators. 
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