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Abstract 

For blind source separation, when the Fisher information matrix is 
used as the Riemannian metric tensor for the parameter space, the 
steepest descent algorithm to maximize the likelihood function in 
this Riemannian parameter space becomes the serial updating rule 
with equivariant property. This algorithm can be further simplified 
by using the asymptotic form of the Fisher information matrix 
around the equilibrium. 

1 Introduction 

The relative gradient was introduced by (Cardoso and Laheld, 1996) to design 
multiplicative updating algorithms with equivariant property for blind separation 
problems. The idea is to calculate differentials by using a relative increment instead 
of an absolute increment in the parameter space. This idea has been extended to 
compute the relative Hessian by (Pham, 1996). 

For a matrix function f = f (W), the relative gradient is defined by 

Vf= ::VWT. (1) 

From the differential of f (W) based on the relative gradient, the following learning 
rule is given by (Cardoso and Laheld, 1996) to maximize the function f: 

dW = VfW= 8f WTW 
dt 1] 1] 8W (2) 

Also motivated by designing blind separation algorithms with equivariant property, 
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the natural gradient defined by 

(3) 

was introduced in (Amari et al, 1996) which yields the same learning rule (2). The 
geometrical meaning of the natural gradient is given by (Amari, 1996). More details 
about the natural gradient can be found in (Yang and Amari, 1997) and (Amari, 
1997). 

The framework of the natural gradient learning was proposed by (Amari, 1997) . In 
this framework, the ordinary gradient descent learning algorithm in the Euclidean 
space is not optimal in minimizing a function defined in a Riemannian space. The 
ordinary gradient should be replaced by the natural gradient which is defined by 
operating the inverse of the metric tensor in the Riemannian space on the ordinary 
gradient. Let w denote a parameter vector. It is proved by (Amari, 1997) that if 
C (w) is a loss function defined on a Riemannian space {w} with a metric tensor G, 
the negative natural gradient of C(w), namely, _G- 1 gg is the steepest descent 
direction to decrease this function in the Riemannian space. Therefore, the steepest 
descent algorithm in this Riemannian space has the following form: 

dw = -T}G-I ac. 
dt ow 

If the Fisher information matrix is used as the metric tensor for the Riemannian 
space and C(w) is replaced by the negative log-likelihood function, the above learn­
ing rule becomes the method of scoring (Kay, 1993) which is the focus ofthis paper. 

Both the relative gradient V and the natural gradient V were proposed in order to 
design the multiplicative updating algorithms with the equivariant property. The 
former is due to a multiplicative increment in calculating differential while the latter 
is du,: to an increment based on a nonholonomic basis (Amari, 1997). Neither V 
nor V' depends on the data model. The Fisher information matrix is a special 
and important choice for the Riemannian metric tensor for statistical estimation 
problems. It depends on the data model. Operating the inverse of the Fisher 
information matrix on the ordinary gradient, we have another gradient operator. It 
is called a natural gradient induced by the Fisher information matrix. 

In this paper, we show how to derive a multiplicative updating algorithm from 
the method of scoring. This approach is different from those based on the relative 
gradient and the natural gradient defined by (3). 

2 Fisher Information Matrix For Blind Separation 

Consider a linear mixing system: 
x =As 

where A E Rnxn, x = (Xl,' .. ,xn)T and s = (Sl,···, snf. Assume that sources 
are independent with a factorized joint pdf: 

n 

res) = II r(si). 
i=l 

The likelihood function is 
rCA -IX) 

p(x;A) = IAI 
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where IAI = Idet(A)I. Let W = A -1 and y = Wx ( a demixing system), then we 
have the log-likelihood function 

n 

L(W) = Llogri(Yi) + log IWI. 
i=1 

It is easy to obtain 
8L _ rHYi) x. + W:-:T (4) 

8W ij - ri(Yi) 1 '1 

where w;t is the (i,j) entry in W-T = (W-l)T. Writing (4) in a matrix form, 
we have 

:~ = W-T _ ~(Y)XT = (I - ~(y)yT)W-T = F(y)W-T (5) 

where ~(y) = (<I>I (y.),"', <l>n(Yn))T, <l>i(Yi) = - ;H~:~ and F(y) = I - ~(y)yT. 

The maximum likelihood algorithm based on the ordinary gradient 8'1:tt is 

d: = TJ(I _ ~(y)yT)W-T = TJF(y)W-T 

which has the high computational complexity due to the matrix inverse W- I . The 
maximum likelihood algorithm based on the natural gradient of matrix functions is 

dW -dt = TJ"VL = TJ(I - ~(y)yT)W. (6) 

The same algorithm is obtained from d!f = TJV LW by using the relative gradient. 
An apparent reason for using this algorithm is to avoid the matrix inverse W- 1 • 

Another good reason for using it is due to the fact that the matrix W driven by 
(6) never becomes singular if the initial matrix W is not singular. This is proved 
by (Yang and Amari, 1997). In fact, this property holds for any learning rule of the 
following type: 

dW dt = H(y)W. (7) 

Let < U,V >= Tr(UTV) denote the inner product of U and V E 3?nxn. When 
Wet) is driven by the equation (7), we have 
d'W, _< 8'U;' dW >-< IWI(W-I)T dW > dt - 8 'dt - , dt 
= Tr(IWIW- 1 H(y)W) = Tr(H(y))IWI. 

Therefore, 

IW(t)1 = IW(O)I exP{lt 
Tr(H(y(r)))dr} (8) 

which is non-singular when the initial matrix W(O) is non-singular. 

The matrix function F(y) is also called an estimating function. At the equilibrium 
of the system (6), it satisfies the zero condition E[F(y)] = 0, i.e., 

E[<I>i (Yi)Yj] = f5ij 

where f5ij = 1 if i = j and 0 otherwise. 

(9) 

To calculate the Fisher information matrix, we need a vector form of the equation 
(5). Let Vec(·) denote an operator on a matrix which cascades the columns of the 
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matrix from the left to the right and forms a column vector. This operator has the 
following property: 

Vec(ABC) = (CT 0 A)Vec(B) (10) 
where 0 denotes the Kronecker product. Applying this property, we first rewrite 
(5) as 

aL aL -1 
aVec(W) = Vec(aW) = (W 0I)Vec(F(y)), (11) 

and then obtain the Fisher information matrix 

G - E[ aL ( aL )T] 
- aVec(W) aVec(W) 

= (W- l 0 I)E[Vec(F(y))VecT(F(y))](W-T 0 I). (12) 

The inverse of G is 
G- l = (WT 0 I)D- l (W 0 I) 

where D = E[Vec(F(y))VecT(F(y))]. 

(13) 

3 Natural Gradient Induced By Fisher Information Matrix 

Define a Riemannian space 

V = {Vec(W); W E Gl(n)} 

in which the Fisher information matrix G is used as its metric. Here, Gl(n) is the 
space of all the n x n invertible matrices. 

Let C(W) be a matrix function to be minimized. It is shown by (Amari, 1997) that 
the steepest descent direction in the Riemannian space V is _G-1 8V:C~W)' 

Let us define the natural gradient in V by 

- ( (T -l( ) ac \lC W) = W 0I)D W 0 I aVec(W) (14) 

which is called the natural gradient induced by the Fisher information matrix. The 
time complexity of computing the natural gradient in the space V is high since 
inverting the matrix D of n2 x n2 is needed. 

Using the natural gradient in V to maximize the likelihood function L(W) or the 
method of scoring, from (11) and (14) we have the following learning rule 

Vec(d:) = T/(WT 0 I)D-1Vec(F(y)) (15) 

We shall prove that the above learning rule has the equivariant property. 

Denote Vec- l the inverse of the operator Vec. Let matrices B and A be of n2 x n2 

and n x n, respectively. Denote B(i,·) the i-th row of Band Bi = Vec-I(B(i, .)), 
i = 1, ... , n 2 . Define an operator B* as a mapping from ~n x n to ~n x n: 

[ 
< Bl,A > .. , < BnLn+I,A > 1 

B*A= ... .., ... 
< Bn,A > ... < B n2,A > 

where < .,. > is the inner product in ~nxn. With the operation *, we have 

BVec(A) = [ < Bl:' A> ] = Vec(Vec- l ( [ < ~\ A> ])) = Vec(B * A), 

<Bn2,A> <Bn2,A> 
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i.e., 
BVec(A) = Vec(B * A) . 

Applying the above relation, we first rewrite the equation (15) as 

dW _ 
Vec( dt) = 1](WT 0 J)Vec(D 1* F(y)), 

then applying (10) to the above equation we obtain 

d: = 1](D-1 *F(y))W. (16) 

Theorem 1 For the blind separation problem, the maximum likelihood algorithm 
based on the natural gradient induced by the Fisher information matrix or the method 
of scoring has the form (16) which is a multiplicative updating rule with the equiv­
ariant property. 

To implement the algorithm (16), we estimate D by sample average. Let fij(Y) be 
the (i,j) entry in F(y). A general form for the entries in D is 

dij,kl = E[Jij (y)fkl (y)] 

which depends on the source pdfs ri(si) . When the source pdfs are unknown, in 
practice we choose Ti(Si) as our prior assumptions about the source pdfs. To simplify 
the algorithm (16), we replace D by its asymptotic form at the solution points 
a = (ClSlT(I),· .. , CnSlT(n»)T where (0"(1),.··, O"(n)) is a permutation of (1,· · ·, n). 

Regarding the structure of the asymptotic D, we have the following theorem: 

Theorem 2 Assume that the pdfs of the sources Si are even fu.nctions. 

Then at the solution point a = (Cl SlT(l) , ... ,CnSlT(n»)T, D is a diagonal matrix and 
its n2 diagonal entries have two forms, namely, 

E[Jij(a)!ij(a)] = J-LiAj, for i =fi j and 

E[(Jii(a))2] = Vi 

where J-Li = E[4>;(ai)], Ai = E[a;] and Vi = E[4>~(ai)a~] - 1. More concisely, we 
have 

D = diag( Vec( H)) 

where 
H = (J-LiAj )nx n - diag(J-L1 AI, .. . ,J-LnAn) + diag( VI, ... , vn) 

The proof of Theorem 2 is given in Appendix 1. 

(17) 

Let H = (hij)nxn. Since all J-Li, Ai, and Vi are positive, and so are all hij . We define 

1 1 
H = (hij )nxn. 

Then from (17), we have 

D-1 = diag(Vec( ~)). 
The results in Theorem 2 enable us to simplify the algorithm (16) to obtain a low 
complexity learning rule. Since D-1 is a diagonal matrix, for any n x n matrix A 
we have 

D-1Vec(A) = Vec( ~ 0 A) (18) 
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where 0 denotes the componentwise multiplication of two matrices of the same 
dimension. Applying (18) to the learning rule (15), we obtain the following learning 
rule 

dVV 1 
Vec( ---;It) = 1](VVT Ci9 I)Vec(H 0 F(y». 

Again, applying (10) t.o the above equation we have the following learning rule 

dVV 1 
dt = 1]( H 0 F(y»VV. (19) 

Like the learning rule (16), the algorithm (19) is also multiplicative; but unlike \16), 
there is no need to inverse the n2 x n2 matrix in (19). The computation of H is 
straightforward by computing the reciprocals of the entries in H. 

(f.Li, Ai, Vi) are 3n unknowns in G. Let us impose the following constraint 

Vi = f.LiAi. (20) 

Under this constraint, the number of unknowns in G is 2n, and D can be written 
as 

D=D>.Ci9D~ (21) 
where D>. = diag(Al,' . " An) and D~ = diag(f.LI, " . ,f.Ln)' 

From (14), using (21) we have the natural gradient descent rule in the Riemannian 
space V 

dVec(VV) = _ (VVTD- 1VVCi9D- 1 ) ae 
dt 1] >. ~ aVec(VV) . (22) 

Applying the property (10), we rewrite the above equation in a matrix form 

dVV = _ D-1 ae VVTD-1VV 
dt 1] ~ avv >" 

(23) 

Since f.Li and Ai are unknown, D ~ and D>. are replaced by the identity matrix in 
practice. Therefore, the algorithm (2) is an approximation of the algorithm (23). 

Taking e = - L(VV) as the negative likelihood function and applying the expres­
sion (5), we have the following maximum likelihood algorithm based on the natural 
gradient in V: 

dVV -1 ( ( ) T) -I ( ) -;It = 1]D~ I - ~ y y D>. VV. 24 

Again, replacing D~ and D>. by the identity matrix we obtain the maximum like­
lihood algorithm (6) based on the relative gradient or natural gradient of matrix 
functions. 

In the context of the blind separation, the source pdfs are unknown. The prior 
assumption ri(si) used to define the functions <Pi(Yi) may not match the true pdfs 
of the sources. However, the algorithm (24) is generally robust to the mismatch 
between the true pdfs and the pdfs employed by the algorithm if the mismatch is 
not too large. See (Cardoso, 1997) and ( Pham, 1996) for example. 

4 Conclusion 

In the context of blind separation, when the Fisher information matrix is used as 
the Riemannian metric tensor for the parameter space, maximizing the likelihood 
function in this Riemannian space based on the steepest descent method is the 
method of scoring. This method yields a multiplicative updating rule with the 
equivariant property. It is further simplified by using the asymptotic form of the 
Fisher information matrix around the equilibrium. 



5 Appendix 

Appendix 1 Proof of Theorem 2: 

By definition fij(Y) = 6ij -4>i(Yi)Yj. At the equilibrium a = (CI s".(1) , ... ,cns".(n)V, 

we have E[4>i(ai)aj] = 0 for i i= j and E[4>i(ai)ai] = 1. So E[jij(a)] = O. Since 
the source pdfs are even functions, we have E[ai] = 0 and E[4>i(ai)] = o. Applying 
these equalities , it is not difficult to verify that 

E[jij(a)!k,(a)] = 0, for (i,j) i= (k,l) . 

So, D is a diagonal matrix and 

for i i= j. 
Q.E.D. 

E[jii(a)!ii(a)] = E[(l - 4>i(ai)ai)2] = E[4>;(ai)a;] - 1, 

E[jij(a)!ij(a)] = E[4>;(ai)a;] = {tiAj 
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