
RCC Cannot Compute Certain FSA,
Even with Arbitrary Transfer Functions

Mark Ring
RWCP Theoretical Foundation GMD Laboratory

GMD - German National Research Center for Information Technology
Schloss Birlinghoven

D-53 754 Sankt Augustin, Germany
email: Mark .Ring@GMD.de

Abstract

Existing proofs demonstrating the computational limitations of Re­
current Cascade Correlation and similar networks (Fahlman, 1991;
Bachrach, 1988; Mozer, 1988) explicitly limit their results to units
having sigmoidal or hard-threshold transfer functions (Giles et aI.,
1995; and Kremer, 1996). The proof given here shows that for
any finite, discrete transfer function used by the units of an RCC
network, there are finite-state automata (FSA) that the network
cannot model, no matter how many units are used. The proof also
applies to continuous transfer functions with a finite number of
fixed-points, such as sigmoid and radial-basis functions.

1 Introduction

The Recurrent Cascade Correlation (RCC) network was proposed by Fahlman
(1991) to offer a fast and efficient alternative to fully connected recurrent networks.
The network is arranged such that each unit has only a single recurrent connection:
the connection that goes from itself to itself. Networks with the same structure
have been proposed by Mozer (Mozer, 1988) and Bachrach (Bachrach, 1988). This
structure is intended to allow simplified training of recurrent networks in the hopes
of making them computationally feasible. However, this increase in efficiency comes
at the cost of computational power: the networks' computational capabilities are
limited regardless of the power of their activation functions. The remaining input to
each unit consists of the input to the network as a whole together with the outputs
from all units lower in the RCC network. Since it is the structure of the network
and not the learning algorithm that is of interest here, only the structure will be
described in detail.

620 M. Ring

Figure 1: This finite-state automaton was shown by Giles et al. (1995) to be un­
representable by an Ree network whose units have hard-threshold or sigmoidal
transfer functions. The arcs are labeled with transition labels of the FSA which
are given as input to the Ree network. The nodes are labeled with the output
values that the network is required to generate . The node with an inner circle is an
accepting or halting state .

Figure 2: This finite-state automaton is one of those shown by Kremer (1996) not to
be representable by an Ree network whose units have a hard-threshold or sigmoidal
transfer function . This FSA computes the parity of the inputs seen so far .

The functionality of a network of N Ree units, Uo, .. . , UN-l can be described in
the following way:

/o([(t), Vo(t - 1»
/x(i(t), Vx(t - 1), Vx-1(t), Vx-2(t), .. . , Vo(t»,

(1)

(2)

where Vx(t) is the output value of Ux at time step t, and l(t) is the input to the
network at time step t. The value of each unit is determined from: (1) the network
input at the current time step, (2) its own value at the previous time step, and (3)
the output values of the units lower in the network at the current time step . Since
learning is not being considered here, the weights are assumed to be constant.

2 Existing Proofs

The proof of Giles, et al (1995) showed that an Ree network whose units had a
hard-threshold or sigmoidal transfer function cannot produce outputs that oscillate
with a period greater than two when the network input is constant. (An oscillation
has a period of x if it repeats itself every x steps.) Thus, the FSA shown in Figure 1
cannot be modeled by such an Ree network, since its output (shown as node labels)
oscillates at a period greater than two given constant input. Kremer (1996) refined
the class of FSA representable by an Ree network showing that, if the input to
the net oscillates with period p, then the output can only oscillate with a period of
w, where w is one of p's factors (or of 2p's factors if p is odd). An unrepresentable
example, therefore, is the parity FSA shown in Figure 2, whose output has a period
of four given the following input (of period two): 0,1,0,1,

Both proofs, that by Giles et al. and that by Kremer, are explicitly designed with

RCC Cannot Compute Certain FSA, Even with Arbitrary Transfer Functions 621

*0,1

Figure 3: This finite-state automaton cannot be modeled with any RCC network
whose units are capable of representing only k discrete outputs. The values within
the circles are the state names and the output expected from the network. The arcs
describe transitions from state to state, and their values represent the input given
to the network when the transition is made. The dashed lines indicate an arbitrary
number of further states between state 3 and state k which are connected in the
same manner as states 1,2, and 3. (All states are halting states.)

hard-threshold and sigmoidal transfer functions in mind, and can say nothing about
other transfer functions. In other words, these proofs do not demonstrate the lim­
itations of the RCC-type network structure, but about the use of threshold units
within this structure. The following proof is the first that actually demonstrates
the limitations of the single-recurrent-link network structure.

3 Details of the Proof

This section proves that RCC networks are incapable even in principle of modeling
certain kinds of FSA, regardless of the sophistication of each unit's transfer function,
provided only that the transfer function be discrete and finite, meaning only that
the units of the RCC network are capable of generating a fixed number, k, of distinct
output values. (Since all functions implemented on a discrete computer fall into this
category, this assumption is minor. Furthermore, as will be discussed in Section 4,
the outputs of most interesting continuous transfer functions reduce to only a small
number of distinct values.) This generalized RCC network is proven here to be
incapable of modeling the finite-state automaton shown in Figure 3.

622 MRing

For ease of exposition, let us call any FSA of the form shown in Figure 3 an RFk+l
for Ring FSA with k + 1 states. I Further, call a unit whose output can be any of
k distinct values and whose input includes its own previous output, a DRUk for
Discrete Recurrent Unit. These units are a generalization ofthe units used by RCC
networks in that the specific transfer function is left unspecified. By proving the
network is limited when its units are DRUbs proves the limitations of the network's
structure regardless of the transfer function used.

Clearly, a DRUk+1 with a sufficiently sophisticated transfer function could by itself
model an RFk+1 by simply allocating one of its k + 1 output values for each of
the k + 1 states. At each step it would receive as input the last state of the FSA
and the next transition and could therefore compute the next state. By restricting
the units in the least conceivable manner, i.e., by reducing the number of distinct
output values to k, the RCC network becomes incapable of modeling any RFk+1
regardless of how many DRUk's the network contains. This will now be proven.

The proof is inductive and begins with the first unit in the network, which, after
being given certain sequences of inputs, becomes incapable of distinguishing among
any states of the FSA. The second step, the inductive step, proves that no finite
number of such units can 'assist a unit hi~her in the ReC network in making a
distinction between any states of the RFk+ .

Lemma 1 No DR Uk whose input is the current transition of an RFk+1 can reliably
distinguish among any states of the RP+I. More specifically, at least one of the
DR Uk,s k output values can be generated in all of the RP+I 's k + 1 states.

Proof: Let us name the DRUbs k distinct output values VO, VI, ... , Vk-I. The
mapping function implemented by the DRUk can be expressed as follows:

(V X , i) =} VY,

which indicates that when the unit's last output was V X and its current input is i,
then its next output is VY.

Since an RFk is cyclical, the arithmetic in the following will also be cyclical (i.e.,
modular):

xtfJy = { x+y if x + y < k
x+y-k if x + y ~ k

x8y { x-y if x 2: y
- x+k-y if x < y

where 0 ~ x < k and 0 ~ y < k.

Since it is impossible for the DRUk to represent each of the RFk+I,s k + 1 states with
a distinct output value, at least two of these states must be represented ambiguously
by the same value. That is, there are two RFk+l states a and b and one DRUk
value V a/ b such that V a/ b can be generated by the unit both when the FSA is in
state a and when it is in state b. Furthermore, this value will be generated by the
unit given an appropriate sequence of inputs. (Otherwise the value is unreachable,
serves no purpose, and can be discarded, reducing the unit to a DRUk- I.)

Once the DRUk has generated V a/ b , it cannot in the next step distinguish whether
the FSA's current state is a or b. Since the FSA could be in either state a or b, the
next state after a b transition could be either a or b tfJ 1. That is:

(va/b, b) =} Va/bEl'll, (3)

IThanks to Mike Mozer for suggesting this catchy name.

RCC Cannot Compute Certain FSA, Even with Arbitrary Transfer Functions 623

where a e b ~ be a and k > 1. This new output value Va/b$l can therefore be
generated when the FSA is in either state a or state b EB 1. By repeatedly replacing
b with b EB 1 in Equation 3, all states from b to a e 1 can be shown to share output
values with state a, i.e., V a/ b , Va/b$l, V a/ b$2, ... , va/ae2, v a / ae1 all exist.

Repeatedly substituting a eland a for a and b respectively in the last paragraph
produces values vx/y Vx, YEO, 1, ... , k + 1. There is, therefore, at least one value
that can be generated by the unit in both states of every possible pair of states.

Since there are (k! 1) distinct pairs but only k distinct output values, and since

when k > 1, then not all of these pairs can be represented by unique V values. At
least two of these pairs must share the same output value, and this implies that
some v a / b/ e exists that can be output by the unit in any of the three FSA states
a, b, and c.

Starting with
(Va/ b/ e , c) ::::} va/b/e$l,

and following the same argument given above for V a/ b , there must be a vx/y/z for

all triples of states x, Y, and z. Since there are (k ~ 1) distinct triples but only k
distinct output values, and since

fi+ll > 1,

where k > 3, some va/ b/ e/ d must also exist.

This argument can be followed repeatedly since: rer)l >1,

for all m < k + 1, including when m = k. Therefore, there is at least one
VO/l/2f..fk/k+l that can be output by the unit in all k + 1 states of the RFk+l.
Call this value and any other that can be generated in all FSA states ~,k. All
Vk>s are reachable (else they could be discarded and the above proof applied for
DRU I, / < k). When a Vk is output by a DRUk , it does not distinguish any states
of the RFH 1 .

Lemma 2 Once a DRUk outputs a V k , all future outputs will a/so be Vk's.

Proof: The proof is simply by inspection, and is shown in the following table:

Actual State Transition Next State
x x xEB1

xEB1 x x
xEB2 x xEB2
xEB3 x xEB3

x82 x x82
x81 x x81

624 M. Ring

If the unit's last output value was a Vk, then the FSA might be in any of its k + 1
possible states . As can be seen, if at this point any of the possible transitions is
given as input, the next state can also be any of the k + 1 possible states. Therefore,
no future inp'ut can ever serve to lessen the unit's ambiguity.

Theorem 1 An RGG network composed of any finite number of DR Uk 's cannot
model an Rpk+l.

Proof: Let us describe the transitions of an RCC network of N units by using the
following notation:

((VN-I , VN-2, ... , VI, Va), i) ~ (VN- I , VN-2, ... , V{, V~),
where Vrn is the output value of the m'th unit (i.e., Urn) before the given input,
i, is seen by the network, and V~ is Urn's value after i has been processed by the
network. The first unit, Uo, receives only i and Va as input. Every other unit Ux

receives as input i and Vx as well as v~, y < x.

Lemma 1 shows that the first unit, Uo, will eventually generate a value vl, which
can be generated in any of the RFk+1 states. From Lemma 2, the unit will continue
to produce vl values after this point.

Given any finite number N of DRUk,s, Urn-I, ... , Uo that are producing their Vk
values, V~ -1' .. . , Vt, the next higher unit , UN, will be incapable of disambiguating
all states by itself, i.e., at least two FSA states , a and b, will have overlapping

output values, V;,p. Since none of the units UN-I, ... , Uo can distinguish between
any states (including a and b),

((a / b k k k) b (a / b (JJ 1 k Vk k)
VN ,VN-I,·· ·, VI'VO ')~ VN 'VN- I '·· ·, I'VO '

assuming that be a ~ ae b and k > 1. The remainder of the prooffollows identically
along the lines developed for Lemmas 1 and 2. The result of this development is
that UN also has a set of reachable output values V~ that can be produced in any
state of the FSA. Once one such value is produced, no less-ambiguous value is ever
generated. Since no RCC network containing any number of DRUk 's can over time
distinguish among any states of an RFHI, no such RCC network can model such
an FSA.

4 Continuous Transfer Functions

Sigmoid functions can generate a theoretically infinite number of output values;
if represented with 32 bits, they can generate 232 outputs. This hardly means,
however, that all such values are of use. In fact, as was shown by Giles et al. (1995),
if the input remains constant for a long enough period of time (as it can in all
RFHI'S) , the output of sigmoid units will converge to a constant value (a fixed
point) or oscillate between two values. This means that a unit with a sigmoid
transfer function is in principle a DRU 2 . Most useful continuous transfer functions
(radial-basis functions, for example), exhibit the same property, reducing to only a
small number of distinct output values when given the same input repeatedly. The
results shown here are therefore not merely theoretical, but are of real practical
significance and apply to any network whose recurrent links are restricted to self
connections.

5 Concl usion

No RCC network can model any FSA containing an RFk+1 (such as that shown
in Figure 3), given units limited to generating k possible output values, regardless

RCC Cannot Compute Certain FSA, Even with Arbitrary Transfer Functions 625

of the sophistication of the transfer function that generates these values. This
places an upper bound on the computational capabilities of an RCC network. Less
sophisticated transfer functions, such as the sigmoid units investigated by Giles et
al. and Kremer may have even greater limitations. Figure 2, for example, could
be modeled by a single sufficiently sophisticated DRU2 , but cannot be modeled
by an RCe network composed of hard-threshold or sigmoidal units (Giles et al.,
1995; Kremer, 1996) because these units cannot exploit all mappings from inputs
to outputs. By not assuming arbitrary transfer functions, previous proofs could not
isolate the network's structure as the source of RCC's limitations.

References

Bachrach, J. R. (1988). Learning to represent state. Master's thesis, Department
of Computer and Information Sciences, University of Massachusetts, Amherst,
MA 01003.

Fahlman, S. E. (1991) . The recurrent cascade-correlation architecture. In Lipp­
mann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems 3, pages 190-196, San Mateo, California. Mor­
gan Kaufmann Publishers.

Giles, C., Chen, D., Sun, G., Chen, H., Lee, Y., and Goudreau, M. (1995). Con­
structive learning of recurrent neural networks: Problems with recurrent cas­
cade correlation and a simple solution. IEEE Transactions on Neural Networks,
6(4):829.

Kremer, S. C. (1996). Finite state automata that recurrent cascade-correlation
cannot represent. In Touretzky, D. S., Mozer, M. C., and Hasselno, M. E.,
editors, Advances in Neural Information Processing Systems 8, pages 679-686.
MIT Press. In Press.

Mozer, M. C. (1988). A focused back-propagation algorithm for temporal pattern
recognition. Technical Report CRG-TR-88-3, Department of Psychology, Uni­
versity of Toronto.

