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Abstract 

An asynchronous PDM (Pulse-Density-Modulating) digital neural 
network system has been developed in our laboratory. It consists 
of one thousand neurons that are physically interconnected via one 
million 7-bit synapses. It can solve one thousand simultaneous 
nonlinear first-order differential equations in a fully parallel and 
continuous fashion. The performance of this system was measured 
by a winner-take-all network with one thousand neurons. Although 
the magnitude of the input and network parameters were identi­
cal for each competing neuron, one of them won in 6 milliseconds. 
This processing speed amounts to 360 billion connections per sec­
ond. A broad range of neural networks including spatiotemporal 
filtering, feedforward, and feedback networks can be run by loading 
appropriate network parameters from a host system. 

1 INTRODUCTION 

The hardware implementation of neural networks is crucial in order to realize the 
real-time operation of neural functions such as spatiotemporal filtering, learning 
and constraint processings. Since the mid eighties, many VLSI chips and systems 
have been reported in the literature, e.g. [1] [2]. Most of the chips and the systems 
including analog and digital implementations, however, have focused on feedforward 
neural networks. Little attention has been paid to the dynamical aspect of feed­
back neural networks, which is especially important in order to realize constraint 
processings, e.g. [3]. Although there were a small number of exceptions that used 
analog circuits [4] [5], their network sizes were limited as compared to those of their 
feedforward counterparts because of wiring problems that are inevitable in regard 
to full and physical interconnections. To relax this problem, a pulse-stream system 
has been used in analog [6] and digital implementations [7]. 
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The author developed a fully interconnected 54-neuron system that uses an asyn­
chronous PDM (Pulse-Density-Modulating) digital circuit system [8]. The present 
paper describes a thousand-neuron system in which all of the neurons are physi­
cally interconnected via one million 7-bit synapses in order to create a fully parallel 
feedback system. The outline of this project was described in [10]. In addition to 
the enlargement of system size, synapse circuits were improved and time constant 
of each neuron was made variable. The PDM system was used because it can ac­
complish faithful analog data transmission between neurons and can relax wiring 
problems. An asynchronous digital circuit was used because it can solve scaling 
problems, and we could also use it to connect more than one thousand VLSI chips, 
as described below. 

2 NEURON MODEL AND THE CIRCUITS 

2.1 SINGLE NEURON MODEL 

The behavior of each neuron in the system can be described by the following non­
linear first-order differential equation: 

dyi(t) N 

= -viet) + L WijYj{t) + li{t), (1) Iti--;];t 
j=l 

Yi{ t) = <p[yi{t)], and (2) 

<pta] { ~ if a > 0 (3) = otherwise, 

where Iti is a time constant of the i-th neuron, y;(t) is an internal potential of the 
i-th neuron at time t, Wij is a synaptic weight from the j-th to the i-th neurons, 
and li(t) is an external input to the i-th neuron. <pta] is an analog threshold output 
function which becomes saturated at a given maximum val~e. 

The system solves Eq.{l) in the following integral form: 

yi{t) = (t {-VieT) + t WijYj(T) + h(T)} d~ + yi(O), 
10 j=l Itl 

(4) 

where y;(O) is an initial value. An analog output of a neuron is expressed by a 
pulse stream whose frequency is proportional to the positive, instantaneous internal 
potential. 

2.2 SINGLE NEURON CmCUIT 

2.2.1 Synapse circuits 

The circuit diagrams for a single neuron are shown in Fig. 1. As shown in Fig.l(a), 
it consists of synapse circuits, excitatory and inhibitory dendrite OR circuits, and 
a cel~ body circuit. Each synapse circuit transforms the instantaneous frequency of 
the input pulses to a frequency that is proportional to the synaptic weight. This 
transformation is carried out by a 6-bit rate multiplier, as shown in Fig.l{b). The 
behavior of a rate multiplier is illustrated in Fig.l(c) using a 3-bit case for brevity. 
A rate multiplier is a counter and its state transits to the next state when an input 
pulse occurs. Each binary bit of a given weight specifies at which states the output 
pulses are generated. When the LSB is on, an output pulse is generated at the 
fourth state. When the second bit is on, output pulses are generated at the second 
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Figure 1: Circuit diagram of a single neuron. (a) Circuit diagram of a single neuron 
and (b) that of a synapse circuit. (c) To illustrate the function of a rate multiplier, 
the multiplication table for a 3-bit case is shown. (d) Circuit diagram of a cell body 
circuit. See details in text. 

and at the sixth states. When the MSB is on, they are generated at all of the odd 
states. Therefore, the magnitude of synaptic weight that can be represented by 
a rate multiplier is less than one. In our circuit, this limitation was overcome by 
increasing the frequency of a neuron output by a factor of two, as described below. 

2.2.2 Dendrite circuits 

Output pulses from a synapse circuit are fed either to an excitatory dendrite OR cir­
cuit or to an inhibitory one, according to the synaptic weight sign. In each dendrite 
OR circuit, the synaptic output pulses are summed by OR gates, as is shown along 
the right side of Fig.1(a). Therefore, if these output pulses are synchronized, they 
are counted as one pulse and linear summation cannot take place. In our circuit, 
each neuron is driven by an individual clock oscillator. Therefore, they will tend to 
become desynchronized. The summation characteristic was analysed in [9], and it 
was shown to have a saturation characteristic that is similar to the positive part of 
a hyperbolic tangent function. 

2.2.3 Cell body circuit 

A cell body circuit performs the integration given by Eq.( 4) as follows. As shown 
in Fig.1(d), integration was performed by a 12-bit up-down counter. Input pulses 
from an excitatory dendrite OR circuit are fed into the up-input of the counter and 
those from an inhibitory one are fed into the down-input after conflicts between 
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excitatory and inhibitory pulses have been resolved by a sampling circuit. A 12-bit 
rate multiplier produces internal pulses whose frequency is 21, where 1 is propor­
tional to the absolute value of the counter. The rate multiplier is driven by a main 
clock whose frequency is 4/max, Imax being the maximum output frequency. When 
the counter value is positive, an output pulse train whose frequency is either 1 or 
2/, according to the scale factor is transmitted from a cell body circuit. 

The negative feedback term that appeared in the integrand of Eq.( 4) can be realized 
by feeding the internal pulses into the down-input of the counter when the counter 
value is positive and feeding them into the up-input when it is negative. The 6-
bit rate multiplier inserted in this feedback path changes the time constant of a 
neuron. Let f3i be the rate value of the rate multiplier, where 0 ~ f3i < 26 . The 
Eq.(4) becomes: 

yi(t) 

(5) 

26 211 Therefore, the time constant changes to l!i£, where Pi was given by -,- seconds. /3 max 

It should be noted that, since the magnitUde of the total input was increased by a 
factor of ~, the strength of the input should be decreased by the inverse of that 
factor in order to maintain an appropriate output level. If it is not adjusted, we 
can increase the input strength. Therefore, the system has both input and output 
scaling functions. The time constant varies from about 416psec for f3 = 63 to 
26.2msec for f3 = 1. When f3 = 0, the negative feedback path is interrupted and 
the circuit operates as a simple integrator, and every feedforward network can be 
run in this mode of operation. 

3 THE 1,OOO-NEURON SYSTEM 

3.1 VLSI CHIP 

A single type of VLSI chip was fabricated using a 0.7 pm CMOS gate array with 
250,000 gates. A single chip contains 18 neurons and 51 synapses for each neuron. 
Therefore, each chip has a total of 918 synapses. About 85% of the gates in a gate 
array could be used, which was an extremely efficient value. A chip was mounted 
on a flat package with 256 pins. Among them, 216 pins were used for signals and 
the others were used for twenty pairs of V cc( =3.3V) and GND. 

3.2 THE SYSTEM 

As illustrated in Fig.2(a), this system consists of 56 x 20 = 1,120 chips. 56 chips 
are used for both cell bodies and synapses, and the others are used to extend 
dendrite circuits and increase the number of synapses. In order to extend the 
dendrites, the dendrite signals in a chip can be directly transmitted to the dendrite 
extention terminals of another chip by bypassing the cell body circuits. There are 
51 x 20 = 1,020 synapses per neuron. Among them, 1,008 synapses are used for fully 
hard-wired interconnections and the other 12 synapses are used to receive external 
signals. There are a total of 1,028,160 synapses in this system. It is controlled by 
a personal computer. The synaptic weights, the contents of the up-down counters 
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Figure 2: Structure of the system. (a) System configuration. The down arrows 
emitted from the open squares designate signal lines that are extending dendrites. 
The others designate neuron outputs. (b) Exterior of the system. It is controlled 
by a personal computer. 

and the control registers can be read and written by the host system. It takes about 
6 seconds to set all the network parameters from the host system. 

The exterior of this system is shown in Fig.2(b). Inside the cabinet, there are four 
shelves. In each shelf, fourteen circuit boards were mounted and on each board 20 
chips were mounted. One chip was used for 18 neurons and the other chips were 
used to extend the dendrites. Each neuron is driven by an individual 20MHz clock 
oscillator. 

4 SYSTEM PERFORMANCE 

In order to measure the performance of this system, one neuron was used as a signal 
generator. By setting all the synaptic weights and the internal feedback gain of a 
signal neuron to zero, and by setting the content of the up-down counter to a given 
value, it can produce an output with a constant frequency that is proportional to 
the counter value. The input strength of the other neurons can be adjusted by 
changing the counter value of a signal neuron or the synaptic weights from it. 

The step reponses of a neuron to different inputs are shown in Fig.3(a). As seen in 
the figure, the responses exactly followed Eq.(l) and the time constant Was about 
400psec. Figure 3(b) shows responses with different time constants. The inputs 
were identical for all cases. 

Figure 3( c) shows the response of a temporal filter that was obtained by the differ­
ence between a fast and a slow neuron. By combining two low-pass filters that had 
different cutoff frequencies, a band-pass filter was created. A variety of spatiotem-
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Figure 3: Responses obtained by the system. (a) Step responses to different input 
levels. Parameters are the values that are set in the up-down counter of a signal 
neuron. (b) Step responses for different time constants. Parameters are the values of 
f3i in Eq.5. Inputs were identical in all cases. (c) Response of a temporal filter that 
was ol>taind by the difference between a fast and a slow neuron. (d) Response of 
a winner-take-all network among 1,007 neurons. The responses of a winner neuron 
and 24 of the 1,006 defeated neurons are shown. 

poral filters can be implemented in this way. 

Figure 3( d) shows the responses of a winner-take-all network among 1,007 neurons. 
The time courses of the responses of a winner neuron and 24 of the 1,006 defeated 
neurons are shown in the figure. The strength of all of the inhibitory synaptic 
weights between neurons was set to 2 x (- ::), where 2 is an output scale factor. The 
synaptic weights from a signal neuron to the 1,007 competing ones were identical and 
were ~;. Although the network parameters and the inputs to all competing neurons 
were identical, one of them won in 6 msec. Since the system operates asynchronously 
and the spatial summation of the synaptic output pulses is probabilistic, one of the 
competing neurons can win in a stochastic manner. 

In order to derive the processing speed in terms of connections per second, the 
same winner-take-all network was solved by the Euler method on a latest work­
station. Since it took about 76.2 seconds and 2,736 iterations to converge, the 
processing speed of the workstation was about 36 million connections per second 
( l007xI0<17x2736) S' h' . 10000' f h h k . ::::::! 76 .2 ! • mce t 1S system IS , times aster t an t e wor statlOn, 
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the processing speed amounts to 360 billion connections per second. 

Various kinds of neural networks including spatiotemporal filtering, feedforward and 
feedback neural networks can be run in this single system by loading appropriate 
network parameters from the host system. The second version of this system, which 
can be used via the Internet, will be completed by the end of March, 1998. 
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