
Size of multilayer networks for exact
learning: analytic approach

Andre Elisseefl'
D~pt Mathematiques et Informatique

Ecole Normale Superieure de Lyon
46 allee d'Italie

F69364 Lyon cedex 07, FRANCE

Helene Paugam-Moisy
LIP, URA 1398 CNRS

Ecole Normale Superieure de Lyon
46 allee d'Italie

F69364 Lyon cedex 07, FRANCE

Abstract

This article presents a new result about the size of a multilayer
neural network computing real outputs for exact learning of a finite
set of real samples. The architecture of the network is feedforward,
with one hidden layer and several outputs. Starting from a fixed
training set, we consider the network as a function of its weights.
We derive, for a wide family of transfer functions, a lower and an
upper bound on the number of hidden units for exact learning,
given the size of the dataset and the dimensions of the input and
output spaces.

1 RELATED WORKS

The context of our work is rather similar to the well-known results of Baum et al. [1,
2,3,5, 10], but we consider both real inputs and outputs, instead ofthe dichotomies
usually addressed. We are interested in learning exactly all the examples of a fixed
database, hence our work is different from stating that multilayer networks are
universal approximators [6, 8, 9]. Since we consider real outputs and not only
dichotomies, it is not straightforward to compare our results to the recent works
about the VC-dimension of multilayer networks [11, 12, 13]. Our study is more
closely related to several works of Sontag [14, 15], but with different hypotheses on
the transfer functions of the units. Finally, our approach is based on geometrical
considerations and is close to the model of Coetzee and Stonick [4].

First we define the model of network and the notations and second we develop
our analytic approach and prove the fundamental theorem. In the last section, we
discuss our point of view and propose some practical consequences of the result.

Size of Multilayer Networks for Exact Learning: Analytic Approach 163

2 THE NETWORK AS A FUNCTION OF ITS WEIGHTS

General concepts on neural networks are presented in matrix and vector notations,
in a geometrical perspective. All vectors are written in bold and considered as
column vectors, whereas matrices are denoted with upper-case script.

2.1 THE NETWORK ARCHITECTURE AND NOTATIONS

Consider a multilayer network with N/ input units, N H hidden units and N s output
units. The inputs and outputs are real-valued. The hidden units compute a non
linear function f which will be specified later on. The output units are assumed to
be linear. A learning set of Np examples is given and fixed. For allp E {1..Np }, the
pth example is defined by its input vector dp E iRNI and the corresponding desired
output vector tp E iRNs. The learning set can be represented as an input matrix,
with both row and column notations, as follows

Similarly, the target matrix is T = [ti, . . . ,ttp (, with independent row vectors.

2.2 THE NETWORK AS A FUNCTION g OF ITS WEIGHTS

For all h E {1..N H }, w; = (w;I' ... ,WkNI? E iRNI is the vector of the weights be
tween all the input units and the hth hidden unit. The input weight matrix WI is de
fined as WI = [wi, . .. ,wJvH]. Similarly, a vector w~ = (w;I' ... ,W~NHf E iRNH

represents the weights between all the hidden units and the sth output unit, for all
s E {1..N s}. Thus the output weight matrix W 2 is defined as W 2 = [w~, ... ,wJ.,.s]'
For an input matrix V, the network computes an output matrix

where each output vector z(dp) must be equal to the target tp for exact learning.
The network computation can be detailed as follows, for all s E {1..N s}

NH NI

L w~h.f(L dpi.wt)
h=1 i=1

NH

L w;h.f(d;.w;)
h=1

Hence, for the whole learning set, the sth output component is

NH 2 [f(di .. wu]
L W 8h' :

h=l f(d~p.w;)

NH

(1) L W;h·F(V.W;)
h=l

164 A. Elisseeff and H. Paugam-Moisy

In equation (1), F is a vector operator which transforms a n vector v into a n vector
F(v) according to the relation [F(V)]i = f([v]d, i E {1..n}. The same notation F
will be used for the matrix operator. Finally, the expression of the output matrix
can be deduced from equation (1) as follows

2(V) [F(V.wt), ... ,F(V.WhH)] : [wi, . .. ,w~s]

(2) 2(V) = F(V.Wl).W2

From equation (2), the network output matrix appears as a simple function of
the input matrix and the network weights. Unlike Coetzee and Stonick, we will
consider that the input matrix V is not a variable of the problem. Thus we express
the network output matrix 2(V) as a function of its weights. Let 9 be this function

9 : n.N[xNH+NHxNs --t n.NpxNs

W = (Wl, W2) --t F(V.Wl).W2

The 9 function clearly depends on the input matrix and could have be denoted by
g'D but this index will be dropped for clarity.

3 FUNDAMENTAL RESULT

3.1 PROPERTY OF FUNCTION 9

Learning is said to be exact on V if and only if there exists a network such that
its output matrix 2(V) is equal to the target matrix T. If 9 is a diffeomorphic
function from RN[xNH+NHXNS onto RNpxNs then the network can learn any target
in RNpxNs exactly. We prove that it is sufficient for the network function 9 to be
a local diffeomorphism. Suppose there exist a set of weights X, an open subset
U C n.N[NH+NHNS including X and an open subset V C n.NpNs including g(X)
such that 9 is diffeomorphic from U to V. Since V is an open neighborhood of
g(X), there exist a real ..\ and a point y in V such that T = ..\(y - g(X)) . Since 9 is
diffeomorphic from U to V, there exists a set of weights Y in U such that y = g(Y),
hence T = ..\(g(Y) - g(X)). The output units of the network compute a linear
transfer function, hence the linear combination of g(X) and g(Y) can be integrated
in the output weights and a network with twice N/ N H + N H N s weights can learn
(V, T) exactly (see Figure 1).

g(Y)

(J;) ~)---z

'T=A.(g(Y)-g(X))

Figure 1: A network for exact learning of a target T (unique output for clarity)

For 9 a local diffeomorphism, it is sufficient to find a set of weights X such that the
Jacobian of 9 in X is non-zero and to apply the theorem of local inversion. This
analysis is developed in next sections and requires some assumptions on the transfer
function f of the hidden units. A function which verifies such an hypothesis 11. will
be called a ll-function and is defined below.

Size of Multilayer Networks for Exact Learning,' Analytic Approach 165

3.2 DEFINITION AND THEOREM

Definition 1 Consider a function f : 'R ~ 'R which is C1 ('R) (i.e. with continuous
derivative) and which has finite limits in -00 and +00. Such a function is called a
1l-function iff it verifies the following property

(1l) (Va E'RI I a I> 1) lim I ff'~(ax)) 1= 0
x--+±oo x

From this hypothesis on the transfer function of all the hidden units, the funda
mental result can be stated as follows

Theorem 1 Exact learning of a set of Np examples, in general position, from'RNr
to 'RNs , can be realized by a network with linear output units and a transfer function
which is a 1l-function, if the size N H of its hidden layer verifies the following bounds

Lower Bound N H = r !:r~ 1 hidden units are necessary

Upper Bound NH = 2 r N~'Ns 1 Ns hidden units are sufficient

The proof of the lower bound is straightforward, since a condition for g to be
diffeomorphic from RNrxNH+NHXNs onto RNpxNs is the equality of its input and
output space dimensions NJNH + NHNS = NpNs .

3.3 SKETCH OF THE PROOF FOR THE UPPER BOUND

The 9 function is an expression of the network as a function of its weights, for a given
input matrix: g(W1, W2) = F(V .W1).W2 and 9 can be decomposed according to
its vectorial components on the learning set (which are themselves vectors of size
Ns) . For all p E {1..Np}

The derivatives of 9 w.r.t. the input weight matrix WI are, for all i E {1..NJ}, for
all h E {l..NH}

:!L = [W~h !,(d~.wl)dpi"" ,WJvsh f'(d~ .wl)dpi]T
For the output weight matrix W2, the derivatives of 9 are, for all h E {1..NH}, for
all s E {l..Ns}

88g~ = [0, ... ,O,f(d~ .w~), 0, .. . , 0 y
W 8h '--" '--"

8-1 NS-8

The Jacobian matrix MJ(g) of g, the size of which is NJNH + NHNS columns
and NsNp rows, is thus composed of a block-diagonal part (derivatives w.r.t. W2)
and several other blocks (derivatives w.r.t. WI). Hence the Jacobian J(g) can be
rewritten J(g) =1 J1, h,·· . ,JNH I, after permutations of rows and columns, and
using the Hadamard and Kronecker product notations, each J h being equal to

(3) Jh = [F(v.wl) ® INs, [F'(v.wl) 061 " .F'(v.wl) 06Nr] 0 [W~h" ,WJvsh]]

where INs is for the identity matrix in dimension Ns.

166 A. Elisseeff and H. Paugam-Moisy

Our purpose is to prove that there exists a point X = (Wi, W2) such that the
Jacobian J(g) is non-zero at X, i.e. such that the column vectors of the Jacobian
matrix MJ(g) are linearly independent at X. The proof can be divided in two steps.
First we address the case of a single output unit . Afterwards, this proof can be used
to extend the result to several output units. Since the complete development of both
proofs require a lot of calculations, we only present their sketchs below. More details
can be found in [7] .

3.3.1 Case of a single output unit

The proof is based on a linear arrangement of the projections of the column vectors
of Jh onto a subspace. This subspace is orthogonal to all the Ji for i < h. We
build a vector wi and a scalar w~h such that the projected column vectors are an
independent family, hence they are independent with the Ji for i < h. Such a con
struction is recursively applied until h = N H. We derive then vectors wi, .. . ,wkrH

and wi such that J(g) is non-zero. The assumption on 1l-fonctions is essential for
proving that the projected column vectors of Jh are independent .

3.3.2 Case of multiple output units

In order to extend the result from a single output to s output units, the usual idea
consists in considering as many subnetworks as the number of output units. From
this point of view, the bound on the hidden units would be N H = 2 'f.!;~f which
differs from the result stated in theorem 1. A new direct proof can be developed
(see [7]) and get a better bound: the denominator is increased to N/ + N s .

4 DISCUSSION

The definition of a 1l-function includes both sigmoids and gaussian functions which
are commonly used for multilayer perceptrons and RBF networks, but is not valid
for threshold functions . Figure 2 shows the difference between a sigmoid, which
is a 1l-function, and a saturation which is not a 1l-function. Figures (a) and (b)
represent the span of the output space by the network when the weights are varying ,
i.e. the image of g . For clarity, the network is reduced to 1 hidden unit , 1 input
unit , 1 output unit and 2 input patterns. For a 1l-function, a ball can be extracted
from the output space 'R}, onto which the 9 function is a diffeomorphism. For the
saturation, the image of 9 is reduced to two lines , hence 9 cannot be onto on a ball
of R2 . The assumption of the activation function is thus necessary to prove that
the jacobian is non-zero.

Our bound on the number of hidden units is very similar to Baum's results for
dichotomies and functions from real inputs to binary outputs [1] . Hence the present
result can be seen as an extension of Baum's results to the case of real outputs,
and for a wide family of transfer functions , different from the threshold functions
addressed by Baum and Haussler in [2]. An early result on sigmoid networks has
been stated by Sontag [14]: for a single output and at least two input units, the
number of examples must be twice the number of hidden units. Our upper bound
on the number of hidden units is strictly lower than that (as soon as the number of
input units is more than two). A counterpart of considering real data is that our
results bear little relation to the VC-dimension point of view.

Size of Multilayer Networksfor Exact Learning: Analytic Approach 167

D~ 0.5

-.!, t .5 -1 ~J.5 0 05 1 1.5 2 2.5 :I

1.5

0.5

o •••••• -----~I__-----

-0.5

-1

-1.5

-~2~---:'-1.5=----~1 --:-07.5 -~---'0-:-:.5----7---:':1.5:---!.

(a) : A saturation function (b) : A sigmoid function

Figure 2: Positions of output vectors, for given data, when varying network weights

5 CONCLUSION

In this paper, we show that a number of hidden units N H = 2 r N p N s / (Nr + N s) 1 is
sufficient for a network ofll-functions to exactly learn a given set of Np examples in
general position. We now discuss some of the practical consequences of this result .

According to this formula, the size of the hidden layer required for exact learn
ing may grow very high if the size of the learning set is large. However, without
a priori knowledge on the degree of redundancy in the learning set, exact learning
is not the right goal in practical cases. Exact learning usually implies overfitting,
especially if the examples are very noisy. Nevertheless, a right point of view could
be to previously reduce the dimension and the size of the learning set by feature
extraction or data analysis as pre-processing. Afterwards, our theoretical result
could be a precious indication for scaling a network to perform exact learning on
this representative learning set, with a good compromise between, bias and variance.

Our bound is more optimistic than the rule-of-thumb N p = lOw derived from the
theory of PAC-learning. In our architecture, the number of weights is w = 2NpNs.
However the proof is not constructive enough to be derived as a learning algorithm,
especially the existence of g(Y) in the neighborhood of g(X) where 9 is a local
diffeomorphism (cf. figure 1). From this construction we can only conclude that
NH = r NpNs/(Nr+Ns)l is necessary and NH = 2 fNpNs/(Nr+Ns)l is sufficient
to realize exact learning of Np examples, from nNr to nNs.

168 A. Elisseeff and H. Paugam-Moisy

The opportunity of using multilayer networks as auto-associative networks and for
data compression can be discussed at the light of this results. Assume that N s = NJ
and the expression of the number of hidden units is reduced to N H = N p or at
least NH = Np /2 . Since N p ~ NJ + Ns, the number of hidden units must verify
N H ~ NJ. Therefore, an architecture of "diabolo" network seems to be precluded
for exact learning of auto-associations. A consequence may be that exact retrieval
from data compression is hopeless by using internal representations of a hidden
layer smaller than the data dimension.

Acknowledgements

This work was supported by European Esprit III Project nO 8556, NeuroCOLT
Working Group. We thank C.S. Poon and J.V. Shah for fruitful discussions.

References

[1] E. B. Baum. On the capabilities of multilayer perceptrons. J. of Complexity,
4:193-215, 1988.

[2] E. B. Baum and D. Haussler . What size net gives valid generalization? Neural
Computation, 1:151- 160, 1989.

[3] E. K. Blum and L. K. Li. Approximation theory and feedforward networks.
Neural Networks, 4(4) :511-516, 1991.

[4] F. M. Coetzee and V. L. Stonick. Topology and geometry of single hidden layer
network, least squares weight solutions. Neural Computation, 7:672-705, 1995.

[5] M. Cosnard, P. Koiran, and H. Paugam-Moisy. Bounds on the number of
units for computing arbitrary dichotomies by multilayer perceptrons. J. of
Complexity, 10:57-63, 1994.

[6] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math.
Control, Signal Systems, 2:303-314, October 1988.

[7] A. Elisseeff and H. Paugam-Moisy. Size of multilayer networks for exact learn
ing: analytic approach. Rapport de recherche 96-16, LIP, July 1996.

[8] K. Funahashi. On the approximate realization of continuous mappings by
neural networks. Neural Networks, 2(3):183- 192, 1989.

[9] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359-366, 1989.

[10] S.-C. Huang and Y.-F. Huang. Bounds on the number of hidden neurones in
multilayer perceptrons. IEEE Trans . Neural Networks, 2:47- 55, 1991.

[11] M. Karpinski and A. Macintyre. Polynomial bounds for vc dimension of sig
moidal neural networks . In 27th ACM Symposium on Theory of Computing,
pages 200-208, 1995.

[12] P. Koiran and E. D. Sontag. Neural networks with quadratic vc dimension. In
Neural Information Processing Systems (NIPS *95), 1995. to appear.

[13] W . Maass. Bounds for the computational power and learning complexity of
analog neural networks. In 25th ACM Symposium on Theory of Computing,
pages 335-344, 1993.

[14] E. D. Sontag. Feedforward nets for interpolation and classification. J. Compo
Syst. Sci., 45:20-48, 1992.

[15] E. D. Sontag. Shattering all sets of k points in "general position" requires (k-
1)/2 parameters. Technical Report Report 96-01, Rutgers Center for Systems
and Control (SYCON), February 1996.

