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Abstract 

Epidemiological data is traditionally analyzed with very simple 
techniques. Flexible models, such as neural networks, have the 
potential to discover unanticipated features in the data. However, 
to be useful, flexible models must have effective control on overfit­
ting. This paper reports on a comparative study of the predictive 
quality of neural networks and other flexible models applied to real 
and artificial epidemiological data. The results suggest that there 
are no major unanticipated complex features in the real data, and 
also demonstrate that MacKay's [1995] Bayesian neural network 
methodology provides effective control on overfitting while retain­
ing the ability to discover complex features in the artificial data. 

1 Introduction 

Traditionally, very simple statistical techniques are used in the analysis of epidemi­
ological studies. The predominant technique is logistic regression, in which the 
effects of predictors are linear (or categorical) and additive on the log-odds scale. 
An important virtue of logistic regression is that the relationships identified in the 
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data can be interpreted and explained in simple terms, such as "the odds of devel­
oping lung cancer for males who smoke between 20 and 29 cigarettes per day are 
increased by a factor of 11.5 over males who do not smoke". However, because of 
their simplicity, it is difficult to use these models to discover unanticipated complex 
relationships, i.e., non-linearities in the effect of a predictor or interactions between 
predictors. Interactions and non-linearities can of course be introduced into logistic 
regressions, but must be pre-specified, which tends to be impractical unless there 
are only a few variables or there are a priori reasons to test for particular effects. 

Neural networks have the potential to automatically discover complex relationships. 
There has been much interest in using neural networks in biomedical applications; 
witness the recent series of articles in The Lancet, e.g., Wyatt [1995] and Baxt 
[1995]. However, there are not yet sufficient comparisons or theory to come to firm 
conclusions about the utility of neural networks in biomedical data analysis. To 
date, comparison studies, e.g, those by Michie, Spiegelhalter, and Taylor [1994], 
Burke, Rosen, and Goodman [1995]' and Lippmann, Lee, and Shahian [1995], have 
had mixed results, and Jefferson et aI's [1995] complaint that many "successful" 
applications of neural networks are not compared against standard techniques ap­
pears to be justified. The intent of this paper is to contribute to the body of useful 
comparisons by reporting a study of various neural-network and statistical modeling 
techniques applied to an epidemiological data analysis problem. 

2 The data 

The original data set consisted of information on 15,463 subjects from a study con­
ducted by the Division of Epidemiology and Cancer Prevention at the BC Cancer 
Agency. In this study, detailed questionnaire reported personal information, life­
time tobacco and alcohol use, and lifetime employment history for each subject. 
The subjects were cancer patients in BC with diagnosis dates between 1983 and 
1989, as ascertained by the population-based registry at the BC Cancer Agency. 
Six different tobacco and alcohol habits were included: cigarette (c), cigar (G), and 
pipe (p) smoking, and beer (B), wine (w), and spirit drinking (s). The models re­
ported in this paper used up to 27 predictor variables: age at first diagnosis (AGE), 

and 26 variables related to alcohol and tobacco consumption. These included four 
variables for each habit: total years of consumption (CYR etc), consumption per 
day or week (CDAY, BWK etc), years since quitting (CYQUIT etc), and a binary vari­
able indicating any indulgence (CSMOKE, BDRINK etc) . The remaining two binary 
variables indicated whether the subject ever smoked tobacco or drank alcohol. All 
the binary variables were non-linear (threshold) transforms of the other variables. 
Variables not applicable to a particular subject were zero, e.g., number of years of 
smoking for a non-smoker, or years since quitting for a smoker who did not quit. 

Of the 15,463 records, 5901 had missing information in some of the fields related 
to tobacco or alcohol use. These were not used, as there are no simple methods 
for dealing with missing data in neural networks. Of the 9,562 complete records, a 
randomly selected 3,195 were set aside for testing, leaving 6,367 complete records 
to be used in the modeling experiments. 

There were 28 binary outcomes: the 28 sites at which a subject could have cancer 
(subjects had cancers at up to 3 different sites). The number of cases for each site 
varied, e.g., for LUNGSQ (Lung Squamous) there were 694 cases among the complete 
records, for ORAL (Oral Cavity and Pharynx) 306, and for MEL (Melanoma) 464. 

All sites were modeled individually using carefully selected subjects as controls. 
This is common practice in cancer epidemiology studies, due to the difficulty of 
collecting an unbiased sample of non-cancer subjects for controls. Subjects with 
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cancers at a site suspected of being related to tobacco usage were not used as 
controls. This eliminated subjects with any sites other than COLON, RECTUM, MEL 

(Melanoma), NMSK (Non-melanoma skin), PROS (Prostate), NHL (Non-Hodgkin's 
lymphoma), and MMY (Multiple-Myeloma), and resulted in between 2959 and 3694 
controls for each site. For example, the model for LUNGSQ (lung squamous cell) 
cancer was fitted using subjects with LUNGSQ as the positive outcomes (694 cases), 
and subjects all of whose sites were among COLON, RECTUM, MEL, NMSK, PROS, NHL, 

or MMY as negative outcomes (3694 controls). 

3 Statistical methods 

A number of different types of statistical methods were used to model the data. 
These ranged from the non-flexible (logistic regression) through partially flexible 
(Generalized Additive Models or GAMs) to completely flexible (classification trees 
and neural networks). Each site was modeled independently, using the log likeli­
hood of the data under the binomial distribution as the fitting criterion. All of the 
modeling, except for the neural networks and ridge regression, was done using the 
the S-plus statistical software package [StatSci 1995]. 

For several methods, we used Breiman's [1996] bagging technique to control over­
fitting. To "bag" a model, one fits a set of models independently on bootstrap 
samples. The bagged prediction is then the average of the predictions of the models 
in the set. Breiman suggests that bagging will give superior predictions for unstable 
models (such as stepwise selection, pruned trees, and neural networks). 

Preliminary analysis revealed that the predictive power of non-flexible models could 
be improved by including non-linear transforms of some variables, namely AGESQ 

and the binary indicator variables SMOKE, DRINK, CSMOKE, etc. Flexible models 
should be able to discover useful non-linear transforms for themselves and so these 
derived variables were not included in the flexible models. In order to allow com­
parisons to test this, one of non-flexible models (ONLYLIN-STEP) also did not use any 
of these derived variables. 

Null model: (NULL) The predictions of the null model are just the frequency of 
the outcome in the training set. 

Logistic regression: The FULL model used the full set of predictor variables, 
including a quadratic term for age: AGESQ. 

Stepwise logistic regression: A number of stepwise regressions were fitted, dif­
fering in the set of variables considered. Outcome-balanced lO-fold cross validation 
was used to select the model size giving best generalization. The models were as 
follows: AGE-STEP (AGE and AGESQ); CYR-AGE-STEP (CYR, AGE and AGESQ)j ALC­

CYR-AGE-STEP (all alcohol variables, CYR, AGE and AGESQ); FULL-STEP (all variables 
including AGESQ); and ONLYLIN-STEP (all variables except for the derived binary 
indicator variables SMOKE, CSMOKE, etc, and only a linear AGE term). 

Ridge regression: (RIDGE) Ridge regression penalizes a logistic regression model 
by the sum of the squared parameter values in order to control overfitting. The 
evidence framework [MacKay 1995] was used to select seven shrinkage parameters: 
one for each of the six habits, and one for SMOKE, DRINK, AGE and AGESQ. 

Generalized Additive Models: GAMs [Hastie and Tibshirani 1990] fit a smooth­
ing spline to each parameter. GAMs can model non-linearities, but not interactions. 
A stepwise procedure was used to select the degree (0,1,2, or 4) of the smoothing 
spline for each parameter. The procedure started with a model having a smoothing 
spline of degree 2 for each parameter, and stopped when the Ale statistic could 
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not reduced any further. Two stepwise GAM models were fitted : GAM-FULL used 
the full set of variables, while GAM-CIG used the cigarette variables and AGE. 

Classification trees: [Breiman et al. 1984] The same cross-validation procedure 
as used with stepwise regression was used to select the best size for TREE, using 
the implementation in S-plus, and the function shrink.treeO for pruning. A bagged 
version with 50 replications, TREE-BAGGED, was also used. After constructing a tree 
for the data in a replication, it was pruned to perform optimally on the training 
data not included in that replication. 

Ordinary neural networks: The neural network models had a single hidden layer 
of tanh functions and a small weight penalty (0 .01) to prevent parameters going to 
infinity. A conjugate-gradient procedure was used to optimize weights. For the NN­

ORD-H2 model , which had no control on complexity, a network with two hidden units 
was trained three times from different small random starting weights. Of these three, 
the one with best performance on the training data was selected as "the model". The 
NN-ORD-HCV used common method for controlling overfitting in neural networks: 10-
fold CV for selecting the optimal number of hidden units. Three random starting 
points for each partition were used calculate the average generalization error for 
networks with one, two and three hidden units Three networks with the best number 
of hidden units were trained on the entire set of training data, and the network 
having the lowest training error was chosen. 

Bagged neural networks with early stopping: Bagging and early stopping 
(terminating training before reaching a minimum on training set error in order to 
prevent overfitting) work naturally together. The training examples omitted from 
each bootstrap replication provide a validation set to decide when to stop, and with 
early stopping, training is fast enough to make bagging practical. 100 networks 
with two hidden units were trained on separate bootstrap replications, and the 
best 50 (by their performance on the omitted examples) were included in the final 
bagged model, NN-ESTOP-BAGGED. For comparison purposes, the mean individual 
performance of these early-stopped networks is reported as NN-ESTOP-AVG. 

N eur~l networks with Bayesian regularization: MacKay's [1995] Bayesian 
evidence framework was used to control overfitting in neural networks. Three ran­
dom starts for networks with 1, 2, 3 or 4 hidden units and three different sets of 
regularization (penalty) parameters were used, giving a total of 36 networks for each 
site. The three possibilities for regularization parameters were: (a) three penalty 
parameters - one for each of input to hidden, bias to hidden, and hidden to output; 
(b) partial Automatic Relevance Determination (ARD) [MacKay 1995] with seven 
penalty parameters controlling the input to hidden weights - one for each habit and 
one for AGE; and (c) full ARD, with one penalty parameter for each of the 19 in­
puts. The "evidence" for each network was evaluated and the best 18 networks were 
selected for the equally-weighted committee model NN-BAYES-CMTT. NN-BAYES-BEST 

was the single network with the maximum evidence. 

4 Results and Discussion 

Models were compared based on their performance on the held-out test data, so 
as to avoid overfitting bias in evaluation. While there are several ways to measure 
performance, e.g. , 0-1 classification error, or area under the ROC curve (as in Burke, 
Rosen and Goodman [1995]), we used the test-set deviance as it seems appropriate 
to compare models using the same criterion as was used for fitting. Reporting 
performance is complicated by the fact that there were 28 different modeling tasks 
(Le., sites), and some models did better on some sites and worse on others. We 
report some overall performance figures and some pairwise comparisons of models. 
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Figure 1: Percent improvement in deviance on test data over the null model. 

Figure 1 shows aggregate deviances across sites (Le., the sum of the test deviance for 
one model over the 28 sites) and deviances for selected sites. The horizontal scale 
in each column indicates the percentage reduction in deviance over the null model. 
Zero percent (the dotted line) is the same performance as the null model, and 100% 
would be perfect predictions. Numbers below the column labels are the number of 
positive outcomes in the training and test sets, respectively. The best predictions 
for LUNGSQ can reduce the null deviance by just over 25%. It is interesting to note 
that much of the information is contained in AGE and CYR: The CYR-AGE-STEP 

model achieved a 7.1% reduction in overall deviance, while the maximum reduction 
(achieved by NN-BAYES-CMTT) was only 8.3%. 

There is no single threshold at which differences in test-set deviance are "signifi­
cant", because of strong correlations between predictions of different models. How­
ever, the general patterns of superiority apparent in Figure 1 were repeated across 
the other sites, and various other tests indicate they are reliable indicators of gen­
eral performance. For example, the best five models, both in terms of aggregate 
deviance across all sites and median rank of performance on individual sites, were, 
in order NN-BAYES-CMTT, RIDGE, NN-ESTOP-BAGGED, GAM-CIG, and FULL-STEP. The 
ONLYLIN-STEP model ranked sixth in median rank, and tenth in aggregate deviance. 

Although the differences between the best flexible models and the logistic models 
were slight, they were consistent. For example, NN-BAYES-CMTT did better than 
FULL-STEP on 21 sites, and better than ONLYLIN-STEP on 23 sites, while FULL-STEP 

drew with ONLYLIN-STEP on 14 sites and did better on 9. If the models had no 
effective difference, there was only a 1.25%. chance of one model doing better than 
the other 21 or more times out of 28. Individual measures of performance were 
also consistent with these findings. For example, for LUNGSQ a bootstrap test of 
test-set deviance revealed that the predictions of NN-BA YES-CMTT were on average 
better than those of ONLYLIN-STEP in 99.82% of res amp led test sets (out of 10,000), 
while the predictions of NN-BAYES-CMTT beat FULL-STEP in 93.75% of replications 
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and FULL-STEP beat ONLYLIN-STEP in 98.48% of replications. 

These results demonstrate that good control on overfitting is essential for this task. 
Ordinary neural networks with no control on overfitting do worse than guessing (i.e., 
the null model). Even when the number of hidden units is chosen by cross-validation, 
the performance is still worse than a simple two-variable stepwise logistic regression 
(CYR-AGE-STEP). The inadequacy of the simple Ale-based stepwise procedure for 
choosing the complexity of G AMs is illustrated by the poor performance of the 
GAM-FULL model (the more restricted GAM-CIG model does quite well). 

The effective methods for controlling overfitting were bagging and Bayesian reg­
ularization. Bagging improved the performance of trees and early-stopped neural 
networks to good levels. Bayesian regularization worked very well with neural net­
works and with ridge regression. Furthermore, examination of the performance of 
individual networks indicates that networks with fine-grained ARD were frequently 
superior to those with coarser control on regularization. 

5 Artificial sites with complex relationships 

The very minor improvement achieved by neural networks and trees over logistic 
models provokes the following question: are complex relationships are really rela­
tively unimportant in this data, or is the strong control on overfitting preventing 
identification of complex relationships? In order to answer this question, we cre­
ated six artificial "sites" for the subjects. These were designed to have very similar 
properties to the real sites, while possessing non-linear effects and interactions. 

The risk models for the artificial sites possessed a underlying trend equal to half 
that of a good logistic model for LUNGSQ, and one of three more complex effects: 
FREQ, a frequent non-linear (threshold) effect (BWK > 1) affecting 4,334 of the 9,562 
subjects; RARE, a rare threshold effect (BWK > 10), affecting 1,550 subjects; and 
INTER, an interaction (BYR . GYR) affecting 482 subjects . For three of the artificial 
sites the complex effect was weak (LO), and for the other three it was strong (HI). For 
each subject and each artificial site, a random choice as to whether that subject was 
a positive case for that site was made, based on probability given by the model for 
the artificial site. Models were fitted to these sites in the same way as to other sites 
and only subjects without cancer at a smoking related site were used as controls. 
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Figure 2: Percent improvement in deviance on test data for the artificial sites. 

For comparison purposes, logistic models containing the true set of variables, includ­
ing non-linearities and interactions, were fitted to the artificial data. For example, 
the model RARE-TRUE contained the continuous variables AGE, AGESQ, CDAY, CYR, 

and CYQUIT, and the binary variables SMOKE and BWK> 10-, 



Neural Networks in Cancer Epidemiology 973 

Figure 2 shows performance on the artificial data. The neural networks and bagged 
trees were very effective at detecting non-linearities and interactions. Their perfor­
mance was at the same level as the appropriate true models , while the performance 
of simple models lacking the ability to fit the complexities (e.g., FULL-STEP) was 
considerably worse. 

6 Conclusions 

For predicting the risk of cancer in our data, neural networks with Bayesian es­
timation of regularization parameters to control overfitting performed consistently 
but only slightly better than logistic regression models. This appeared to be due 
to the lack of complex relationships in the data: on artificial data with complex 
relationships they performed markedly better than logistic · models. Good control 
of overfitting is essential for this task, as shown by the poor performance of neural 
networks with the number of hidden units chosen by cross-validation. 

Given their ability to not overfit while still identifying complex relationships we 
expect that neural networks could prove useful in epidemiological data-analysis 
by providing a method for checking that a simple statistical model is not missing 
important complex relationships. 
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