
Exploiting Model Uncertainty Estimates
for Safe Dynamic Control Learning

Jeff G. Schneider
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
schneide@cs.cmu.edu

Abstract
Model learning combined with dynamic programming has been shown to
be effective for learning control of continuous state dynamic systems. The
simplest method assumes the learned model is correct and applies dynamic
programming to it, but many approximators provide uncertainty estimates
on the fit. How can they be exploited? This paper addresses the case
where the system must be prevented from having catastrophic failures dur
ing learning. We propose a new algorithm adapted from the dual control
literature and use Bayesian locally weighted regression models with dy
namic programming. A common reinforcement learning assumption is that
aggressive exploration should be encouraged. This paper addresses the con
verse case in which the system has to reign in exploration. The algorithm
is illustrated on a 4 dimensional simulated control problem.

1 Introduction
Reinforcement learning and related grid-based dynamic programming techniques are
increasingly being applied to dynamic systems with continuous valued state spaces.
Recent results on the convergence of dynamic programming methods when using
various interpolation methods to represent the value (or cost-to-go) function have
given a sound theoretical basis for applying reinforcement learning to continuous
valued state spaces [Gordon, 1995]. These are important steps toward the eventual
application of these methods to industrial learning and control problems.

It has also been reported recently that there are significant benefits in data and
computational efficiency when data from running a system is used to build a model,
rather than using it once for single value function updates (as Q-learning would
do) and discarding it [Sutton, 1990, Moore and Atkeson, 1993, Schaal and Atkeson,
1993, Davies, 1996]. Dynamic programming sweeps can then be done on the learned
model either off-line or on-line. In its vanilla form, this method assumes the model
is correct and does deterministic dynamic programming using the model. This
assumption is often not correct, especially in the early stages of learning. When
learning simulated or software systems, there may be no harm in the fact that this

1048 J. G. Schneider

assumption does not hold. However, in real, physical systems there are often states
that really are catastrophic and must be avoided even during learning. Worse yet,
learning may have to occur during normal operation of the system in which case its
performance during learning must not be significantly degraded.

The literature on adaptive and optimal linear control theory has explored this prob
lem considerably under the names stochastic control and dual control. Overviews
can be found in [Kendrick, 1981, Bar-Shalom and Tse, 1976]. The control decision
is based on three components call the deterministic, cautionary, and probing terms.
The deterministic term assumes the model is perfect and attempts to control for
the best performance. Clearly, this may lead to disaster if the model is inaccurate.
Adding a cautionary term yields a controller that considers the uncertainty in the
model and chooses a control for the best expected performance. Finally, if the sys
tem learns while it is operating, there may be some benefit to choosing controls
that are suboptimal and/or risky in order to obtain better data for the model and
ultimately achieve better long-term performance. The addition of the probing term
does this and gives a controller that yields the best long-term performance.

The advantage of dual control is that its strong mathematical foundation can pro
vide the optimal learning controller under some assumptions about the system,
the model, noise, and the performance criterion. Dynamic programming methods
such as reinforcement learning have the advantage that they do not make strong
assumptions about the system, or the form of the performance measure. It has
been suggested [Atkeson, 1995, Atkeson, 1993] that techniques used in global linear
control, including caution and probing, may also be applicable in the local case. In
this paper we propose an algorithm that combines grid based dynamic program
ming with the cautionary concept from dual control via the use of a Bayesian locally
weighted regression model.

Our algorithm is designed with industrial control applications in mind. A typical
scenario is that a production line is being operated conservatively. There is data
available from its operation, but it only covers a small region of the state space and
thus can not be used to produce an accurate model over the whole potential range
of operation. Management is interested in improving the line's response to changes
in set points or disturbances, but can not risk much loss of production during the
learning process. The goal of our algorithm is to collect new data and optimize the
process while explicitly minimizing the risk.

2 The Algorithm
Consider a system whose dynamics are given by xk+1 = f(xk, uk). The state, x,
and control,u, are real valued vectors and k represents discrete time increments.
A model of f is denoted as j. The task is to minimize a cost functional of the
form J = E:=D L(xk, uk, k) subject to the system dynamics. N mayor may not
be fixed depending on the problem. L is given, but f must be learned. The goal is
to acquire data to learn f in order to minimize J without incurring huge penalties
in J during learning. There is an implicit assumption that the cost function defines
catastrophic states. If it were known that there were no disasters to avoid, then
simpler, more aggressive algorithms would likely outperform the one presented here.
The top level algorithm is as follows:

1. Acquire some data while operating the system from an existing controller.

2. Construct a model from the data using Bayesian locally weighted regression.

3. Perform DP with the model to compute a value function and a policy.

4. Operate the system using the new policy and record additional data.

Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning 1049

5. Repeat to step 2 while there is still some improvement in performance.

In the rest of this section we describe steps 2 and 3.

2.1 Bayesian locally weighted regression
We use a form of locally weighted regression [Cleveland and Delvin, 1988,
Atkeson, 1989, Moore, 1992] called Bayesian locally weighted regression [Moore
and Schneider, 1995] to build a model from data. When a query, x q , is made, each
of the stored data points receives a weight Wi = exp(-llxi - xq l1 2 / K). K is the
kernel width which controls the amount of localness in the regression. For Bayesian
LWR we assume a wide, weak normal-gamma prior on the coefficients of the regres
sion model and the inverse of the noise covariance. The result of a prediction is a
t distribution on the output that remains well defined even in the absence of data
(see [Moore and Schneider, 1995] and [DeGroot, 1970] for details) .

The distribution of the prediction in regions where there is little data is crucial to
the performance of the DP algorithm. As is often the case with learning through
search and experimentation, it is at least as important that a function approximator
predicts its own ignorance in regions of no data as it is how well it interpolates in
data rich regions.

2.2 Grid based dynamic programming
In dynamic programming, the optimal value function, V, represents the cost-to-go
from each state to the end of the task assuming that the optimal policy is followed
from that point on. The value function can be computed iteratively by identifying
the best action from each state and updating it according to the expected results
of the action as given by a model of the system. The update equation is:

Vk+1(x) = minL(x, u) + Vk(j(x, u» (1)
In our algorithm, updates to the ~que function are computed while considering
the probability distribution on the results of each action. If we assume that the
output of the real system at each time step is an independent random variable
whose probability density function is given by the uncertainty from the model, the
update equation is as follows:

Vk+1(x) = minL(x, u) + E[Vk(f(x, u))lj] (2)
Note that the independence as~~fhption does not hold when reasonably smooth
system dynamics are modeled by a smooth function approximator. The model
error at one time step along a trajectory is highly correlated with the model error
at the following step assuming a small distance traveled during the time step.

Our algorithm for DP with model uncertainty on a grid is as follows:

1. Discretize the state space, X, and the control space, U.

2. For each state and each control cache the cost of taking this action from
this state. Also compute the probability density function on the next state
from the model and cache the information. There are two cases which are
shown graphically in fig. 1:

• If the distribution is much narrower than the grid spacing, then the
model is confident and a deterministic update will be done according to
eq. 1. Multilinear interpolation is used to compute the value function
at the mean of the predicted next state [Davies, 1996] .

• Otherwise, a stochastic update will be done according to eq. 2. The pdf
of each of the state variables is stored, discretized at the same intervals
as the grid representing the value function. Output independence is

1050 J G. Schneider

High Confidence Next State Low Confidence Next State

.......---:: ~ V ...---:l

V. ~ V
v7 v8

vlO vI,.!!
(.-/.

17 __ V
-..;:~

Figure 1: Illustration of the two kinds of cached updates. In the high confidence sce
nario the transition is treated as deterministic and the value function is computed
with multilinear interpolation : Vl~+l = L(x, u) + OAV; + 0.3V; + 0.2V1k1 + 0.1 vl2•

In the low confidence scenario the transition is treated stochastically and the up
date takes a weighted sum over all the vertices of significant weight as well as the

~ ,. Ie I

b b·l · ·d h ·d TTk+l _ L() L-f.,/ lp(.,/l><} p(x lJ ,x,u)V (x) pro a Iltymassoutsl et egn: VIO - X,u +~ I'

L-{.,'Ip(,,' »<} p(x If ,x ,u)

assumed and later the pdf of each grid point will be computed as the
product of the pdfs for each dimension and a weighted sum of all the
grid points with significant weight will be computed. Also the total
probability mass outside the bounds of the grid is computed and stored.

3. For each state, use the cached information to estimate the cost of choos
ing each action from that state. Update the value function at that state
according to the cost of the best action found .

4. Repeat 3 until the value function converges, or the desired number of steps
has been reached in finite step problems.

5. Record the best action (policy) for each grid point.

3 Experiments: Minimal Time Cart-Pole Maneuvers
The inverted pendulum is a well studied problem. It is easy to learn to stabilize it in
a small number oftrials, but not easy to learn quick maneuvers. We demonstrate our
algorithm on the harder problem of moving the cart-pole stably from one position
to another as quickly as possible. We assume we have a controller that can balance
the pole and would like to learn to move the cart quickly to new positions, but
never drop the pole during the learning process. The simulation equations and
parameters are from [Barto et aI., 1983] and the task is illustrated at the top of fig.
2. The state vector is x = [pole angle (0), pole angular velocity (8), cart position
(p), cart velocity (p)]. The control vector, u, is the one dimensional force applied
to the cart. Xo is [0 0 170] and the cost function is J = E~o xT X + 0.01 uT u. N is
not fixed. It is determined by the amount of time it takes for the system to reach
a goal region about the target state, [0 0 0 0] . If the pole is dropped, the trial ends
and an additional penalty of 106 is incurred.

This problem has properties similar to familiar process control problems such as
cooking, mixing, or cooling, because it is trivial to stabilize the system and it can
be moved slowly to a new desired position while maintaining the stability by slowly
changing positional setpoints. In each case, the goal is to learn how to respond
faster without causing any disasters during, or after, the learning process.

Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning 1051

3.1 Learning an LQR controller
We first learn a linear quadratic regulator that balances the pole. This can be done
with minimal data. The system is operated from the state, [0 0 0 0] for 10 steps
of length 0.1 seconds with a controller that chooses u randomly from a zero mean
gaussian with standard deviation 0.5. This is repeated to obtain a total of 20 data
points. That data is used to fit a global linear model mapping x onto x'. An LQR
controller is constructed from the model and the given cost function following the
derivation in [Dyer and McReynolds, 1970].

The resulting linear controller easily stabilizes the pole and can even bring the
system stably (although very inefficiently as it passes through the goal several times
before coming to rest there) to the origin when started as far out as x = [0 0 10 0].
If the cart is started further from the origin, the controller crashes the system.

3.2 Building the initial Bayesian LWR model
We use the LQR controller to generate data for an initial model. The system is
started at x = [0 0 1 0] and controlled by the LQR controller with gaussian noise
added as before. The resulting 50 data points are stored for an LWR model that
maps [e, 0, u] -+ [0, pl. The data in each dimension of the state and control space is
scaled to [0 1]. In this scaled space, the LWR kernel width is set to 1.0.

Next, we consider the deterministic DP method on this model. The grid covers the
ranges: [±1.0 ±4.0 ±21.0 ±20.0] and is discretized to [11 9 11 9] levels. The control
is ±30.0 discretized to 15 levels. Any state outside the grid bounds is considered
failure and incurs the 106 penalty. If we assume the model is correct, we can use
deterministic DP on the grid to generate a policy. The computation is done with
fixed size steps in time of 0.25 seconds. We observe that this policy is able to move
the system safely from an initial state of [0 0 12 0], but crashes if it is started further
out. Failure occurs because the best path g.enerated using the model strays far from
the region of the data (in variables e and e) used to construct the model.

It is disappointing that the use of LWR for nonlinear modeling didn't improve much
over a globally linear model and an LQR controller. We believe this is a common
situation. It is difficult to build better controllers from naive use of nonlinear
modeling techniques because the available data models only a narrow region of
operation and safely acquiring a wider range of data is difficult.

3.3 Cautionary dynamic programming
At this point we are ready to test our algorithm. Step 3 is executed using the LWR
model from the data generated by the LQR controller as before. A trace of the
system's operation when started at a distance of 17 from the goal is shown at the
top of fig. 2. The controller is extremely conservative with respect to the angle of
the pole. The pole is never allowed to go outside ±0.13 radians. Even as the cart
approaches the goal at a moderate velocity the controller chooses to overshoot the
goal considerably rather than making an abrupt action to brake the system.

The data from this run is added to the model and the steps are repeated. Traces of
the runs from three iterations of the algorithm are shown in fig. 2. At each trial, the
controller becomes more aggressive and completes the task with less cost. After the
third iteration, no significant improvement is observed. The costs are summarized
and compared with the LQR and deterministic DP controllers in table 1.

Fig. 3 is another illustration of how the policy becomes increasingly aggressive. It
plots the pole angle vs. the pole angular velocity for the original LQR data and the
executions at each of the following three trials. In summary, our algorithm is able

1052

13
24

1. G. Schneider

Goal Reg-ion

o

12 11 10
3 2.

25 2' 2'1. 'A i ••

10 •

o I I I I I I I I I I I t I I I I

, • 5 01

o I I I I I I I I I I ' ,

Figure 2: The task is to move the cart to the origin as quickly as possible without
dropping the pole. The bottom three pictures show a trace of the policy execution
obtained after one, two, and three trials (shown in increments of 0.5 seconds)

Controller Number of data points used Cost from initial state 17
to build the controller

LQR 20 failure
Deterministic D P 50 failure
Stochastic DP trial 1 50 12393
Stochastic DP trial 2 221 7114
Stochastic DP trial 3 272 6270

Table 1: Summary of experimental results

to start from a simple controller that can stabilize the pole and learn to move it
aggressively over a long distance without ever dropping the pole during learning.

4 Discussion
We have presented an algorithm that uses Bayesian locally weighted regression
models with dynamic programming on a grid. The result is a cautionary adaptive
control algorithm with the flexibility of a non-parametric nonlinear model instead
of the more restrictive parametric models usually considered in the dual control
literature. We note that this algorithm presents a viewpoint on the exploration
vs exploitation issue that is different from many reinforcement learning algorithms,
which are devised to encourage exploration (as in the probing concept in dual con
trol) . However, we argue that modeling the data first with a continuous function
approximator and then doing DP on the model often leads to a situation where
exploration must be inhibited to prevent disasters. This is particularly true in the
case of real, physical systems.

Exploiting Model Uncertainty Estimatesfor Safe Dynamic Control Learning

1.5

1

0.5

Angular
0

Velocity . .
-0.5

-1 " " " " " " . " " "

-1.5
-0.8 -0.6 -0.4

" - ' .. - -. . .

" " " " " " . "

",,"""" "

-0.2 0
Pole Angle

",," " '.

LQR data 0
1st trial

_ 2nd trial
'3td trial ---

., .
" .. ,,"" "

0.2

-....

:

0.4

'.

1053

0.6

Figure 3: Execution trace. At each iteration, the controller is more aggressive.

References
[Atkeson, 1989) C. Atkeson. Using local models to control movement . In Advances in Neural Informa

tion Processing Systems, 1989.

[Atkeson, 1993] C . Atkeson. Using local trajectory optimizers to speed up global optimization in dy
namic programming. In Advances in Neural Information Processing Systems (NIPS-6), 1993.

[Atkeson , 1995) C . Atkeson . Local methods for active learning. Invited talk at AAAI Fall Symposium
on Active Learning, 1995 .

[Bar-Shalom and Tse, 1976) Y . Bar-Shalom and E . Tse. Concepts and Methods in Stochastic Control.
Academic Press, 1976.

[Barto et al., 1983) A . Barto, R. Sutton, and C. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 1983.

[Cleveland and Delvin, 1988) W . Cleveland and S. Delvin . Locally weighted regression: An approach to
regression analysis by local fitting. Journal of the American Statistical Association, pages 596-610,
September 1988.

[Davies, 1996] S. Davies . Applying grid-based interpolation to reinforcement learning. In Neural Infor
mation Proceuing Systems 9, 1996.

[DeGroot, 1970) M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, 1970.

[Dyer and McReynolds , 1970) P. Dyer and S. McReynolds. The Computation and Theory of Optimal
Control. Academic Press, 1970.

[Gordon , 1995] G. Gordon. Stable function approximation in dynamic programming. In The 12th
International Conference on Machine Learning, 1995 .

[Kendrick, 1981) D. Kendrick. Stochastic Control for Economic Models. McGraw-Hill, 1981.

[Moore and AtkesoD, 1993) A . Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less real time. Machine Learning, 13(1):103-130,1993.

[Moore and Schneider, 1995] A. Moore and J. Schneider. Memory based stochastic optimization. In
Advances in Neural Information Proceuing Systems (NIPS-B), 1995 .

[Moore, 1992) A. Moore. Fast, robust adaptive control by learning only forward models. In Advances
in Neural Information Processing Systems 4, 1992.

[Schaal and Atkeson, 1993) S. Schaal and C . Atkeson. Assessing the quality of learned local models. In
Advances in Neural Information Processing Systems (NIPS-6), 1993.

[Sutton, 1990) R. Sutton. First results with dyna, an intergrated architecture for learning, planning,
and reacting. In AAAI Spring Symposium on Planning in Uncertain, Unpredictable , or Changing
Environment", 1990.

