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Abstract 
Model learning combined with dynamic programming has been shown to 
be effective for learning control of continuous state dynamic systems. The 
simplest method assumes the learned model is correct and applies dynamic 
programming to it, but many approximators provide uncertainty estimates 
on the fit. How can they be exploited? This paper addresses the case 
where the system must be prevented from having catastrophic failures dur
ing learning. We propose a new algorithm adapted from the dual control 
literature and use Bayesian locally weighted regression models with dy
namic programming. A common reinforcement learning assumption is that 
aggressive exploration should be encouraged. This paper addresses the con
verse case in which the system has to reign in exploration. The algorithm 
is illustrated on a 4 dimensional simulated control problem. 

1 Introduction 
Reinforcement learning and related grid-based dynamic programming techniques are 
increasingly being applied to dynamic systems with continuous valued state spaces. 
Recent results on the convergence of dynamic programming methods when using 
various interpolation methods to represent the value (or cost-to-go) function have 
given a sound theoretical basis for applying reinforcement learning to continuous 
valued state spaces [Gordon, 1995]. These are important steps toward the eventual 
application of these methods to industrial learning and control problems. 

It has also been reported recently that there are significant benefits in data and 
computational efficiency when data from running a system is used to build a model, 
rather than using it once for single value function updates (as Q-learning would 
do) and discarding it [Sutton, 1990, Moore and Atkeson, 1993, Schaal and Atkeson, 
1993, Davies, 1996]. Dynamic programming sweeps can then be done on the learned 
model either off-line or on-line. In its vanilla form, this method assumes the model 
is correct and does deterministic dynamic programming using the model. This 
assumption is often not correct, especially in the early stages of learning. When 
learning simulated or software systems, there may be no harm in the fact that this 
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assumption does not hold. However, in real, physical systems there are often states 
that really are catastrophic and must be avoided even during learning. Worse yet, 
learning may have to occur during normal operation of the system in which case its 
performance during learning must not be significantly degraded. 

The literature on adaptive and optimal linear control theory has explored this prob
lem considerably under the names stochastic control and dual control. Overviews 
can be found in [Kendrick, 1981, Bar-Shalom and Tse, 1976]. The control decision 
is based on three components call the deterministic, cautionary, and probing terms. 
The deterministic term assumes the model is perfect and attempts to control for 
the best performance. Clearly, this may lead to disaster if the model is inaccurate. 
Adding a cautionary term yields a controller that considers the uncertainty in the 
model and chooses a control for the best expected performance. Finally, if the sys
tem learns while it is operating, there may be some benefit to choosing controls 
that are suboptimal and/or risky in order to obtain better data for the model and 
ultimately achieve better long-term performance. The addition of the probing term 
does this and gives a controller that yields the best long-term performance. 

The advantage of dual control is that its strong mathematical foundation can pro
vide the optimal learning controller under some assumptions about the system, 
the model, noise, and the performance criterion. Dynamic programming methods 
such as reinforcement learning have the advantage that they do not make strong 
assumptions about the system, or the form of the performance measure. It has 
been suggested [Atkeson, 1995, Atkeson, 1993] that techniques used in global linear 
control, including caution and probing, may also be applicable in the local case. In 
this paper we propose an algorithm that combines grid based dynamic program
ming with the cautionary concept from dual control via the use of a Bayesian locally 
weighted regression model. 

Our algorithm is designed with industrial control applications in mind. A typical 
scenario is that a production line is being operated conservatively. There is data 
available from its operation, but it only covers a small region of the state space and 
thus can not be used to produce an accurate model over the whole potential range 
of operation. Management is interested in improving the line's response to changes 
in set points or disturbances, but can not risk much loss of production during the 
learning process. The goal of our algorithm is to collect new data and optimize the 
process while explicitly minimizing the risk. 

2 The Algorithm 
Consider a system whose dynamics are given by xk+1 = f(xk, uk). The state, x, 
and control,u, are real valued vectors and k represents discrete time increments. 
A model of f is denoted as j. The task is to minimize a cost functional of the 
form J = E:=D L(xk, uk, k) subject to the system dynamics. N mayor may not 
be fixed depending on the problem. L is given, but f must be learned. The goal is 
to acquire data to learn f in order to minimize J without incurring huge penalties 
in J during learning. There is an implicit assumption that the cost function defines 
catastrophic states. If it were known that there were no disasters to avoid, then 
simpler, more aggressive algorithms would likely outperform the one presented here. 
The top level algorithm is as follows: 

1. Acquire some data while operating the system from an existing controller. 

2. Construct a model from the data using Bayesian locally weighted regression. 

3. Perform DP with the model to compute a value function and a policy. 

4. Operate the system using the new policy and record additional data. 
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5. Repeat to step 2 while there is still some improvement in performance. 

In the rest of this section we describe steps 2 and 3. 

2.1 Bayesian locally weighted regression 
We use a form of locally weighted regression [Cleveland and Delvin, 1988, 
Atkeson, 1989, Moore, 1992] called Bayesian locally weighted regression [Moore 
and Schneider, 1995] to build a model from data. When a query, x q , is made, each 
of the stored data points receives a weight Wi = exp( -llxi - xq l1 2 / K). K is the 
kernel width which controls the amount of localness in the regression. For Bayesian 
LWR we assume a wide, weak normal-gamma prior on the coefficients of the regres
sion model and the inverse of the noise covariance. The result of a prediction is a 
t distribution on the output that remains well defined even in the absence of data 
(see [Moore and Schneider, 1995] and [DeGroot, 1970] for details) . 

The distribution of the prediction in regions where there is little data is crucial to 
the performance of the DP algorithm. As is often the case with learning through 
search and experimentation, it is at least as important that a function approximator 
predicts its own ignorance in regions of no data as it is how well it interpolates in 
data rich regions. 

2.2 Grid based dynamic programming 
In dynamic programming, the optimal value function, V, represents the cost-to-go 
from each state to the end of the task assuming that the optimal policy is followed 
from that point on. The value function can be computed iteratively by identifying 
the best action from each state and updating it according to the expected results 
of the action as given by a model of the system. The update equation is: 

Vk+1(x) = minL(x, u) + Vk(j(x, u» (1) 
In our algorithm, updates to the ~que function are computed while considering 
the probability distribution on the results of each action. If we assume that the 
output of the real system at each time step is an independent random variable 
whose probability density function is given by the uncertainty from the model, the 
update equation is as follows: 

Vk+1(x) = minL(x, u) + E[Vk(f(x, u))lj] (2) 
Note that the independence as~~fhption does not hold when reasonably smooth 
system dynamics are modeled by a smooth function approximator. The model 
error at one time step along a trajectory is highly correlated with the model error 
at the following step assuming a small distance traveled during the time step. 

Our algorithm for DP with model uncertainty on a grid is as follows: 

1. Discretize the state space, X, and the control space, U. 

2. For each state and each control cache the cost of taking this action from 
this state. Also compute the probability density function on the next state 
from the model and cache the information. There are two cases which are 
shown graphically in fig. 1: 

• If the distribution is much narrower than the grid spacing, then the 
model is confident and a deterministic update will be done according to 
eq. 1. Multilinear interpolation is used to compute the value function 
at the mean of the predicted next state [Davies, 1996] . 

• Otherwise, a stochastic update will be done according to eq. 2. The pdf 
of each of the state variables is stored, discretized at the same intervals 
as the grid representing the value function. Output independence is 
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Figure 1: Illustration of the two kinds of cached updates. In the high confidence sce
nario the transition is treated as deterministic and the value function is computed 
with multilinear interpolation : Vl~+l = L(x, u) + OAV; + 0.3V; + 0.2V1k1 + 0.1 vl2• 

In the low confidence scenario the transition is treated stochastically and the up
date takes a weighted sum over all the vertices of significant weight as well as the 
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assumed and later the pdf of each grid point will be computed as the 
product of the pdfs for each dimension and a weighted sum of all the 
grid points with significant weight will be computed. Also the total 
probability mass outside the bounds of the grid is computed and stored. 

3. For each state, use the cached information to estimate the cost of choos
ing each action from that state. Update the value function at that state 
according to the cost of the best action found . 

4. Repeat 3 until the value function converges, or the desired number of steps 
has been reached in finite step problems. 

5. Record the best action (policy) for each grid point. 

3 Experiments: Minimal Time Cart-Pole Maneuvers 
The inverted pendulum is a well studied problem. It is easy to learn to stabilize it in 
a small number oftrials, but not easy to learn quick maneuvers. We demonstrate our 
algorithm on the harder problem of moving the cart-pole stably from one position 
to another as quickly as possible. We assume we have a controller that can balance 
the pole and would like to learn to move the cart quickly to new positions, but 
never drop the pole during the learning process. The simulation equations and 
parameters are from [Barto et aI., 1983] and the task is illustrated at the top of fig. 
2. The state vector is x = [ pole angle (0), pole angular velocity (8), cart position 
(p), cart velocity (p) ]. The control vector, u, is the one dimensional force applied 
to the cart. Xo is [0 0 170] and the cost function is J = E~o xT X + 0.01 uT u. N is 
not fixed. It is determined by the amount of time it takes for the system to reach 
a goal region about the target state, [0 0 0 0] . If the pole is dropped, the trial ends 
and an additional penalty of 106 is incurred. 

This problem has properties similar to familiar process control problems such as 
cooking, mixing, or cooling, because it is trivial to stabilize the system and it can 
be moved slowly to a new desired position while maintaining the stability by slowly 
changing positional setpoints. In each case, the goal is to learn how to respond 
faster without causing any disasters during, or after, the learning process. 
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3.1 Learning an LQR controller 
We first learn a linear quadratic regulator that balances the pole. This can be done 
with minimal data. The system is operated from the state, [0 0 0 0] for 10 steps 
of length 0.1 seconds with a controller that chooses u randomly from a zero mean 
gaussian with standard deviation 0.5. This is repeated to obtain a total of 20 data 
points. That data is used to fit a global linear model mapping x onto x'. An LQR 
controller is constructed from the model and the given cost function following the 
derivation in [Dyer and McReynolds, 1970]. 

The resulting linear controller easily stabilizes the pole and can even bring the 
system stably (although very inefficiently as it passes through the goal several times 
before coming to rest there) to the origin when started as far out as x = [0 0 10 0]. 
If the cart is started further from the origin, the controller crashes the system. 

3.2 Building the initial Bayesian LWR model 
We use the LQR controller to generate data for an initial model. The system is 
started at x = [0 0 1 0] and controlled by the LQR controller with gaussian noise 
added as before. The resulting 50 data points are stored for an LWR model that 
maps [e, 0, u] -+ [0, pl. The data in each dimension of the state and control space is 
scaled to [0 1]. In this scaled space, the LWR kernel width is set to 1.0. 

Next, we consider the deterministic DP method on this model. The grid covers the 
ranges: [±1.0 ±4.0 ±21.0 ±20.0] and is discretized to [11 9 11 9] levels. The control 
is ±30.0 discretized to 15 levels. Any state outside the grid bounds is considered 
failure and incurs the 106 penalty. If we assume the model is correct, we can use 
deterministic DP on the grid to generate a policy. The computation is done with 
fixed size steps in time of 0.25 seconds. We observe that this policy is able to move 
the system safely from an initial state of [0 0 12 0], but crashes if it is started further 
out. Failure occurs because the best path g.enerated using the model strays far from 
the region of the data (in variables e and e) used to construct the model. 

It is disappointing that the use of LWR for nonlinear modeling didn't improve much 
over a globally linear model and an LQR controller. We believe this is a common 
situation. It is difficult to build better controllers from naive use of nonlinear 
modeling techniques because the available data models only a narrow region of 
operation and safely acquiring a wider range of data is difficult. 

3.3 Cautionary dynamic programming 
At this point we are ready to test our algorithm. Step 3 is executed using the LWR 
model from the data generated by the LQR controller as before. A trace of the 
system's operation when started at a distance of 17 from the goal is shown at the 
top of fig. 2. The controller is extremely conservative with respect to the angle of 
the pole. The pole is never allowed to go outside ±0.13 radians. Even as the cart 
approaches the goal at a moderate velocity the controller chooses to overshoot the 
goal considerably rather than making an abrupt action to brake the system. 

The data from this run is added to the model and the steps are repeated. Traces of 
the runs from three iterations of the algorithm are shown in fig. 2. At each trial, the 
controller becomes more aggressive and completes the task with less cost. After the 
third iteration, no significant improvement is observed. The costs are summarized 
and compared with the LQR and deterministic DP controllers in table 1. 

Fig. 3 is another illustration of how the policy becomes increasingly aggressive. It 
plots the pole angle vs. the pole angular velocity for the original LQR data and the 
executions at each of the following three trials. In summary, our algorithm is able 
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Figure 2: The task is to move the cart to the origin as quickly as possible without 
dropping the pole. The bottom three pictures show a trace of the policy execution 
obtained after one, two, and three trials (shown in increments of 0.5 seconds) 

Controller Number of data points used Cost from initial state 17 
to build the controller 

LQR 20 failure 
Deterministic D P 50 failure 
Stochastic DP trial 1 50 12393 
Stochastic DP trial 2 221 7114 
Stochastic DP trial 3 272 6270 

Table 1: Summary of experimental results 

to start from a simple controller that can stabilize the pole and learn to move it 
aggressively over a long distance without ever dropping the pole during learning. 

4 Discussion 
We have presented an algorithm that uses Bayesian locally weighted regression 
models with dynamic programming on a grid. The result is a cautionary adaptive 
control algorithm with the flexibility of a non-parametric nonlinear model instead 
of the more restrictive parametric models usually considered in the dual control 
literature. We note that this algorithm presents a viewpoint on the exploration 
vs exploitation issue that is different from many reinforcement learning algorithms, 
which are devised to encourage exploration (as in the probing concept in dual con
trol) . However, we argue that modeling the data first with a continuous function 
approximator and then doing DP on the model often leads to a situation where 
exploration must be inhibited to prevent disasters. This is particularly true in the 
case of real, physical systems. 
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Figure 3: Execution trace. At each iteration, the controller is more aggressive. 

References 
[Atkeson, 1989) C. Atkeson. Using local models to control movement . In Advances in Neural Informa

tion Processing Systems, 1989. 

[Atkeson, 1993] C . Atkeson. Using local trajectory optimizers to speed up global optimization in dy
namic programming. In Advances in Neural Information Processing Systems (NIPS-6), 1993. 

[Atkeson , 1995) C . Atkeson . Local methods for active learning. Invited talk at AAAI Fall Symposium 
on Active Learning, 1995 . 

[Bar-Shalom and Tse, 1976) Y . Bar-Shalom and E . Tse. Concepts and Methods in Stochastic Control. 
Academic Press, 1976. 

[Barto et al., 1983) A . Barto, R. Sutton, and C. Anderson. Neuronlike adaptive elements that can solve 
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 1983. 

[Cleveland and Delvin, 1988) W . Cleveland and S. Delvin . Locally weighted regression: An approach to 
regression analysis by local fitting. Journal of the American Statistical Association, pages 596-610, 
September 1988. 

[Davies, 1996] S. Davies . Applying grid-based interpolation to reinforcement learning. In Neural Infor
mation Proceuing Systems 9, 1996. 

[DeGroot, 1970) M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, 1970. 

[Dyer and McReynolds , 1970) P. Dyer and S. McReynolds. The Computation and Theory of Optimal 
Control. Academic Press, 1970. 

[Gordon , 1995] G. Gordon. Stable function approximation in dynamic programming. In The 12th 
International Conference on Machine Learning, 1995 . 

[Kendrick, 1981) D. Kendrick. Stochastic Control for Economic Models. McGraw-Hill, 1981. 

[Moore and AtkesoD, 1993) A . Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning 
with less data and less real time. Machine Learning, 13(1):103-130,1993. 

[Moore and Schneider, 1995] A. Moore and J. Schneider. Memory based stochastic optimization. In 
Advances in Neural Information Proceuing Systems (NIPS-B), 1995 . 

[Moore, 1992) A. Moore. Fast, robust adaptive control by learning only forward models. In Advances 
in Neural Information Processing Systems 4, 1992. 

[Schaal and Atkeson, 1993) S. Schaal and C . Atkeson. Assessing the quality of learned local models. In 
Advances in Neural Information Processing Systems (NIPS-6), 1993. 

[Sutton, 1990) R. Sutton. First results with dyna, an intergrated architecture for learning, planning, 
and reacting. In AAAI Spring Symposium on Planning in Uncertain, Unpredictable , or Changing 
Environment", 1990. 


