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Abstract 

A central theme of computational vision research has been the re
alization that reliable estimation of local scene properties requires 
propagating measurements across the image. Many authors have 
therefore suggested solving vision problems using architectures of 
locally connected units updating their activity in parallel. Unfor
tunately, the convergence of traditional relaxation methods on such 
architectures has proven to be excruciatingly slow and in general 
they do not guarantee that the stable point will be a global mini
mum. 
In this paper we show that an architecture in which Bayesian Be
liefs about image properties are propagated between neighboring 
units yields convergence times which are several orders of magni
tude faster than traditional methods and avoids local minima. In 
particular our architecture is non-iterative in the sense of Marr [5]: 
at every time step, the local estimates at a given location are op
timal given the information which has already been propagated to 
that location. We illustrate the algorithm's performance on real 
images and compare it to several existing methods. 

1 Theory 

The essence of our approach is shown in figure 1. Figure 1a shows the prototypical 
ill-posed problem: interpolation of a function from sparse data. Figure 1b shows a 
traditional relaxation approach to the problem: a dense array of units represents 
the value of the interpolated function at discretely sampled points. The activity of a 
unit is updated based on the local data (in those points where data is available) and 
the activity of the neighboring points. As discussed below, the local update rule can 
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Figure 1: a. a prototypical ill-posed problem h. Traditional relaxation approach: dense 
array of units represent the value of the interpolated function. Units update their activity 
based on local information and the activity of neighboring units. c. The Bayesian Belief 
Propagation (BBP) approach. Units transmit probabilities and combine them according 
to probability calculus in two non-interacting streams. 

be defined such that the network converges to a state in which the activity of each 
unit corresponds to the value of the globally optimal interpolating function. Figure 
lc shows the Bayesian Belief Propagation (BBP) approach to the problem. As in 
the traditional approach the function is represented by the activity of a dense array 
of units. However the units transmit probabilities rather than single estimates to 
their neighbors and combine the probabilities according to the probability calculus. 

To formalize the above discussion , let Yk represent the activity of a unit at location 
k, and let Yk be noisy samples from the true function. A typical interpolation 
problem would be to minimize: 

J(Y) = L Wk(Yk - yk)2 + A L(Yi - Yi+l)2 (1) 
k 

Where we have defined Wk = a for grid points with no data, and Wk = 1 for points 
with data. Since J is quadratic, any local update in the direction of the gradient 
will converge to the optimal estimate. This yields updates of the sort: 

( ( Yk-l + YHl ) ( '" » Yk +- Yk + TJk A 2 - Yk + Wk Yk - Yk (2) 

Relaxation algorithms differ in their choice of TJ: TJ = Ij(A + Wk) corresponds to 
Gauss-Seidel relaxation and TJ = 1.9j(A + Wk) corresponds to successive over relax
ation (SOR) which is the method of choice for such problems [10] . 

To derive a BBP update rule for this problem, note that that minimizing J(Y) 
is equivalent to maximizing the posterior probability of Y given Y'" assuming the 
following generative model: 

Yi+l = Yi + 11 (3) 
Y; = WiYi + TJ (4) 

Where 11 "'" N(O, (TR), TJ "'" N(O , (TD) . The ratio of (TD to (TR plays a role similar to 
that of A in the original cost functional. 

The advantage of considering the cost functional as a posterior is that it enables us 
to use the methods of Hidden Markov Models, Bayesian Belief Nets and Optimal 
Estimation to derive local update rules (cf. [6, 7, 1 D. Denote the posterior by 
Pi(u) = P(ri = uIY"'), the Markovian property allows us to factor Pi(U) into three 
terms: one depending on the local data, another depending on data to the left of i 
and a third depending on data to the right of i. Thus: 

Pi(U) = cai(u)Li(u).Bi(u) (5) 

where ai(u) = P(Yi = uIYl~i -l)' .Bi(U) = P(Yi = uIYi+l,N) ' Li(U) = P(Yi"'lri = u) 
and c denotes a normalizing constant . Now, denoting the conditional Ci(u, v) = 
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P(Yi = ulYi-l = v), O'i(U) can be written in terms of O'i-l(V): 

O'j(u) = C 1 O'i-l(V)Ci(u, v)Li-l(V) (6) 

where c denotes another normalizing constant. A symmetric equation can be written 
for f3i( u). 

This suggests a propagation scheme where units represent the probabilities given in 
the left hand side of equations 5-6 and updates are based on the right hand side, i.e. 
on the activities of neighboring units. Specifically, for a Gaussian generating process 
the probabilities can be represented by their mean and variance. Thus denote 
Pi I'V N(pi' Ui), and similarly O'j """ N(pf, un and f3i I'V N(p~, uf). Performing the 
integration in 6 gives a Kalman-Filter like update for the parameters: 

Pi +-

.!!!..... y.. + ..LIL~ + 1 ILl? aD' ai rl -;;trrl . 

_1_ + W._l 

O~_l UD 

( 1 Wi-l )-1 
+- UR + -a- + --

U i _ l UD 

(the update rules for the parameters of f3 are analogous) 

(7) 

(8) 

(9) 

So far we have considered continuous estimation problems but identical issues arise 
in labeling problems, where the task is to estimate a label L" which can take on M 
discrete values. We will denote L,,(m) = 1 if the label takes on value m and zero 
otherwise. Typically one minimizes functionals of the form: 

J(L) = L L V,,(m)L,,(m) - ALL L,,(m)Lk+l(m) (10) 
m " m " 

Traditional relaxation labeling algorithms minimize this cost functional with up
dates of the form: 

(11) 
Again different relaxation labeling algorithms differ in their choice of f. A linear 
sum followed by a threshold gives the discrete Hopfield network updates, a linear 
sum followed by a "soft" threshold gives the continuous or mean-field Hopfield 
up dates and yet another form gives the relaxation labeling algorithm of Rosenfeld 
et al. (see [3] for a review of relaxation labeling methods ). 

To derive a BBP algorithm for this case one can again rewrite J as the posterior 
of a Markov generating process, and calculate P(L,,(m) = 1) for this process.1. 
This gives the same expressions as in equations 5-6 with the integral replaced by a 
linear sum. Since the probabilities here are not Gaussian, the O'i, f3i, Pi will not be 
represented by their mean and variances, but rather by a vector of length M. Thus 
the update rule for O'i will be: 

(12) 

(and similarly for f3.) 

IFor certain special cases, knowing P(Lk(m) = 1) is not sufficient for choosing the 
sequence of labels that minimizes J. In those cases one should do belief revision rather 
than propagation [6] 
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Figure 2: R. the first frame of a sequence. The hand is translated to the left. b. contour 
extracted using standard methods 

1.1 Convergence 

Equations 5-6 are mathematical identities. Hence, it is possible to show [6] that 
after N iterations the activity of units Pi will converge to the correct posteriors, 
where N is the maximal distance between any two units in the architecture, and an 
iteration refers to one update of all units. Furthermore, we have been able to show 
that after n < N iterations, the activity of unit Pi is guaranteed to represent the 
probability of the hidden state at location i given all data within distance n. 

This guarantee is significant in the light of a distinction made by Marr (1982) 
regarding local propagation rules. In a scheme where units only communicate with 
their neighbors, there is an obvious limit on how fast the information can reach a 
given unit: i.e. after n iterations the unit can only know about information within 
distance n. Thus there is a minimal number of iterations required for all data to 
reach all units. Marr distinguished between two types of iterations - those that are 
needed to allow the information to reach the units, versus those that are used to 
refine an estimate based on information that has already arrived. The significance 
of the guarantee on Pi is that it shows that BBP only uses the first type of iteration 
- iterations are used only to allow more information to reach the units. Once the 
information has arrived, Pi represents the correct posterior given that information 
and no further iterations are needed to refine the estimate. Moreover, we have been 
able to show that propagations schemes that do not propagate probabilities (such 
as those in equations 2) will in general not represent the optimal estimate given 
information that has already arrived. 

To summarize, both traditional relaxation updates as in equation 2 and BBP up
dates as in equations 7-9 give simple rules for updating a unit's activity based on 
local data and activities of neighboring units. However, the fact that BBP updates 
are based on the probability calculus guarantees that a unit's activity will be optimal 
given information that has already arrived and gives rise to a qualitative difference 
between the convergence of these two types of schemes. In the next section, we will 
demonstrate this difference in image interpretation problems. 

2 Results 

Figure 2a shows the first frame of a sequence in which the hand is translated to the 
left. Figure 2b shows the bounding contour of the hand extracted using standard 
techniques. 

2.1 Motion propagation along contours 

Local measurements along the contour are insufficient to determine the motion. 
Hildreth [2] suggested to overcome the local ambiguity by minimizing the following 
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Figure 3: R. Local estimate of velocity along the contour. h. Performance of SOR, 
gradient descent and BBP as a function of time. BBP converges orders of magnitude 
faster than SOR. c. Motion estimate of SOR after 500 iterations. d. Motion estimate of 
BBP after 3 iterations. 

cost functional: 

J(V) = I)dx~v1: + dt1:)2 +..\ L IlvUl - v1:11 2 (13) 
1: 1: 

where dx, dt denote the spatial and temporal image derivatives and V1: denotes the 
velocity at point k along the contour. This functional is analogous to the interpo
lation functional (eq. 1) and the derivation of the relaxation and BBP updates are 
also analogous. 

Figure 3a shows the estimate of motion based solely on local information. The 
estimates are wrong due to the aperture problem. Figure 3b shows the performance 
of three propagation schemes: gradient descent, SOR and BBP. Gradient descent 
converges so slowly that the improvement in its estimate can not be discerned in the 
plot. SOR converges much faster than gradient descent but still has significant error 
after 500 iterations. BBP gets the correct estimate after 3 iterations! (Here and in 
all subsequent plots an iteration refers to one update of all units in the network). 
This is due to the fact that after 3 iterations, the estimate at location k is the 
optimal one given data in the interval [k - 3, k + 3]. In this case, there is enough 
data in every such interval along the contour to correctly estimate the motion. 
Figure 3c shows the estimate produced by SOR after 500 iterations. Even with 
simple visual inspection it is evident that the estimate is quite wrong. Figure 3d 
shows the (correct) estimate produced by BBP after 3 iterations. 

2.2 Direction of figure propagation 

The extracted contour in figure 2 bounds a dark and a light region. Direction of 
figure (DOF) (e.g. [9]) refers to which of these two regions is figure and which is 
ground. A local cue for DOF is convexity - given three neighboring points along 
the contour we prefer the DOF that makes the angle defined by those points acute 



Interpreting Images by Propagating Bayesian Beliefs 

a. b . 

c. d. 

.. ~ - . _ .. - - - - - _.- - _. --.- -- - - _.- - - --

4Il : \ 

" " 
" 20 " I ", 
" I, 

o ~ - ~ -- -- - - - -- --- --- -
o 10 100 160 :lOD 250)00 -
~- ------ . ANII-Or--.,.. 

9/3 

Figure 4: a. Local estimate of DOF along the contour. b. Performance of Hop
field,gradient descent, relaxation labeling and BBP as a function of time. BBP is the 
only method that converges to the global minimum. c. DOF estimate of Hopfield net 
after convergence . d. DOF estimate of BBP after convergence. 

rather than obtuse. Figure 4a shows the results of using this local cue on the hand 
contour. The local cue is not sufficient. 

We can overcome the local ambiguity by minimizing a cost functional that takes into 
account the DOF at neighboring points in addition to the local convexity. Denote 
by Lk(m) the DOF at point k along the contour and define 

(14) 
m k m k 

with Vk(m) determined by the acuteness of the angle at location k. 

Figure 4b shows the performance of four propagation algorithms on this task: three 
traditional relaxation labeling algorithms (MF Hopfield, Rosenfeld et aI, constrained 
gradient descent) and BBP. All three traditional algorithms converge to a local 
minimum, while the BBP converges to the global minimum. Figure 4c shows the 
local minimum reached by the Hopfield network and figure 4d shows the correct 
solution reached by the BBP algorithm. Recall (section 1.1) that BBP is guaranteed 
to converge to the correct posterior given all the data. 

2.3 Extensions to 2D 

In the previous two examples ambiguity was reduced by combining information from 
other points on the same contour . There exist , however, cases when information 
should be propagated to all points in the image. Unfortunately, such propagation 
problems correspond to Markov Random Field (MRF) generative models, for which 
calculation of the posterior cannot be done efficiently. However , Willsky and his 
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colleagues [4] have recently shown that MRFs can be approximated with hierarchical 
or multi-resolution models. In current work, we have been using the multi-resolution 
generative model to derive local BBP rules. In this case, the Bayesian beliefs are 
propagated between neighboring units in a pyramidal representation of the image. 
Although this work is still in preliminary stages, we find encouraging results in 
comparison with traditional 2D relaxation schemes. 

3 Discussion 

The update rules in equations 5-6 differ slightly from those derived by Pearl [6] 
in that the quantities a, {3 are conditional probabilities and hence are constantly 
normalized to sum to unity. Using Pearl's original algorithm for sequences as long 
as the ones we are considering will lead to messages that become vanishingly small. 
Likewise our update rules differ slightly from the forward-backward algorithm for 
HMMs [7] in that ours are based on the assumption that all states are equally likely 
apriore and hence the updates are symmetric in a and {3. Finally, equation 9 can 
be seen as a variant of a Riccati equation [1] . 

In addition to these minor notational differences, the context in which we use the 
update rules is different . While in HMMs and Kalman Filters, the updates are seen 
as interim calculations toward calculating the posterior, we use these updates in a 
parallel network of local units and are interested in how the estimates of units in 
this network improve as a function of iteration. We have shown that an architecture 
that propagates Bayesian beliefs according to the probability calculus yields orders 
of magnitude improvements in convergence over traditional schemes that do not 
propagate probabilities. Thus image interpretation provides an important example 
of a task where it pays to be a Bayesian. 
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