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Abstract 

We propose and analyze an algorithm that approximates solutions 
to the problem of optimal stopping in a discounted irreducible ape
riodic Markov chain. The scheme involves the use of linear com
binations of fixed basis functions to approximate a Q-function. 
The weights of the linear combination are incrementally updated 
through an iterative process similar to Q-Iearning, involving sim
ulation of the underlying Markov chain. Due to space limitations, 
we only provide an overview of a proof of convergence (with prob
ability 1) and bounds on the approximation error. This is the first 
theoretical result that establishes the soundness of a Q-Iearning
like algorithm when combined with arbitrary linear function ap
proximators to solve a sequential decision problem. Though this 
paper focuses on the case of finite state spaces, the results extend 
naturally to continuous and unbounded state spaces, which are ad
dressed in a forthcoming full-length paper. 

1 INTRODUCTION 

Problems of sequential decision-making under uncertainty have been studied ex
tensively using the methodology of dynamic programming [Bertsekas, 1995]. The 
hallmark of dynamic programming is the use of a value junction, which evaluates 
expected future reward, as a function of the current state. Serving as a tool for 
predicting long-term consequences of available options, the value function can be 
used to generate optimal decisions. 

A number of algorithms for computing value functions can be found in the dynamic 
programming literature. These methods compute and store one value per state in a 
state space. Due to the curse of dimensionality, however, states spaces are typically 
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intractable, and the practical applications of dynamic programming are severely 
limited. 

The use of function approximators to "fit" value functions has been a central theme 
in the field of reinforcement learning. The idea here is to choose a function ap
proximator that has a tractable number of parameters, and to tune the parameters 
to approximate the value function. The resulting function can then be used to 
approximate optimal decisions. 

There are two preconditions to the development an effective approximation. First, 
we need to choose a function approximator that provides a "good fit" to the value 
function for some setting of parameter values. In this respect, the choice requires 
practical experience or theoretical analysis that provides some rough information on 
the shape of the function to be approximated. Second, we need effective algorithms 
for tuning the parameters of the function approximator. 

Watkins (1989) has proposed the Q-Iearning algorithm as a possibility. The original 
analyses of Watkins (1989) and Watkins and Dayan (1992), the formal analysis 
of Tsitsiklis (1994), and the related work of Jaakkola, Jordan, and Singh (1994), 
establish that the algorithm is sound when used in conjunction with exhaustive look
up table representations (i.e., without function approximation). Jaakkola, Singh, 
and Jordan (1995), Tsitsiklis and Van Roy (1996a), and Gordon (1995), provide a 
foundation for the use of a rather restrictive class of function approximators with 
variants of Q-Iearning. Unfortunately, there is no prior theoretical support for the 
use of Q- Iearning-like algorithms when broader classes of function approximators 
are employed. 

In this paper, we propose a variant of Q-Iearning for approximating solutions to 
optimal stopping problems, and we provide a convergence result that established its 
soundness. The algorithm approximates a Q-function using a linear combination of 
arbitrary fixed basis functions. The weights of these basis functions are iteratively 
updated during the simulation of a Markov chain. Our result serves as a starting 
point for the analysis of Q-learning-Iike methods when used in conjunction with 
classes of function approximators that are more general than piecewise constant. 
In addition, the algorithm we propose is significant in its own right. Optimal 
stopping problems appear in practical contexts such as financial decision making 
and sequential analysis in statistics. Like other problems of sequential decision 
making, optimal stopping problems suffer from the curse of dimensionality, and 
classical dynamic programming methods are of limited use. The method we propose 
presents a sound approach to addressing such problems. 

2 OPTIMAL STOPPING PROBLEMS 

We consider a discrete-time, infinite-horizon, Markov chain with a finite state space 
S = {I, ... , n} and a transition probability matrix P. The Markov chain follows a 
trajectory Xo, Xl, X2, .•• where the probability that the next state is y given that the 
current state is X is given by the (x, y)th element of P, and is denoted by Pxy. At 
each time t E {O, 1,2, ... } the trajectory can be stopped with a terminal reward of 
G(Xt). If the trajectory is not stopped, a reward of g(Xt) is obtained. The objective 
is to maximize the expected infinite-horizon discounted reward, given by 

E [~"tg(Xt} +<>'G(X,}] , 

where Q: E (0, 1) is a discount factor and T is the time at which the process is 
stopped. The variable T is defined by a stopping policy, which is given by a sequence 
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of mappings I-'t : st+l I-t {stop, continue}. Each I-'t determines whether or not to 
terminate, based on xo, . .. , Xt. If the decision is to terminate, then T = t. 

We define the value function to be a mapping from states to the expected discounted 
future reward, given that an optimal policy is followed starting at a given state. In 
particular, the value function J* : S I-t ~ is given by 

where T is the stopping time given by the policy {I-'d. It is well known that the 
value function is the unique solution to Bellman's equation: 

J*(x) = max [G(X)' g(x) + Q L pxyJ*(Y)]. 
yES 

Furthermore, there is always an optimal policy that is stationary (Le., of the form 
{I-'t = 1-'*, "It}) and defined by 

* () {stop, 
I-' x = continue, 

if G(x) ;::: V*(x), 
otherwise. 

Following Watkins (1989), we define the Q- function as the function Q* : S I-t ~ 
given by 

Q*(x) = g(x) + Q LpxyV*(y). 
yES 

It is easy to show that the Q-function uniquely satisfies 

Q* (x) = g(x) + Q L Pxy max [G(y), Q* (y)] , 
yES 

Furthermore, an optimal policy can be defined by 

*() {stop, 
I-' x = continue, 

if G(x) ;::: Q*(x), 
otherwise. 

3 APPROXIMATING THE Q-FUNCTION 

"Ix E S. (1) 

Classical computational approaches to solving optimal stopping problems involve 
computing and storing a value function in a tabular form. The most common way 
for doing this is through use of an iterative algorithm of the form 

Jk+l (x) = max [G(X),g(X) + Q LPxyJk(Y)]. 
yES 

When the state space is extremely large, as is the typical case, two difficulties arise. 
The first is that computing and storing one value per state becomes intractable, 
and the second is that computing the summation on the right hand side becomes 
intractable. We will present an algorithm, motivated by Watkins' Q-Iearning, that 
addresses both these issues, allowingJor approximate solution to optimal stopping 
problems with large state spaces. 



Approximate Solutions to Optimal Stopping Problems 

3.1 LINEAR FUNCTION APPROXIMATORS 

We consider approximations of Q* using a function of the form 

K 

Q(x, r) = L r(k)¢k (x). 
k=l 
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Here, r = (r(I), ... ,r(K)) is a parameter vector and each ¢k is a fixed scalar 
function defined on the state space S. The functions ¢k can be viewed as basis 
functions (or as vectors of dimension n), while each r(k) can be viewed as the 
associated weight. To approximate the Q-function, one usually tries to choose the 
parameter vector r so as to minimize some error metric between the functions Q(., r) 
and Q*(.). 

It is convenient to define a vector-valued function ¢ : S t-+ lRK , by letting ¢(x) = 
(¢l(X), ... ,¢K(X)). With this notation, the approximation can also be written in 
the form Q(x,r) = (4)r)(x) , where 4> is viewed as a lSI x K matrix whose ith row 
is equal to ¢(x). 

3.2 THE APPROXIMATION ALGORITHM 

In the approximation scheme we propose, the Markov chain underlying the stopping 
problem is simulated to produce a single endless trajectory {xtlt = 0,1,2, ... }. The 
algorithm is initialized with a parameter vector ro, and after each time step, the 
parameter vector is updated according to 

rt+l = rt + ,t¢(Xt) (g(Xt) + a max [¢'(xt+drt,G(xt+d] - ¢'(xdrt) , 

where It is a scalar stepsize. 

3.3 CONVERGENCE THEOREM 

Before stating the convergence theorem, we introduce some notation that will make 
the exposition more concise. Let 7r(I), ... , 7r(n) denote the steady-state probabilities 
for the Markov chain. We assume that 7r(x) > 0 for all xES. Let D be an n x n 
diagonal matrix with diagonal entries 7r(I), . . . , 7r(n). We define a weighted norm 
II·IID by 

IIJIID = L 7r(X)P(x). 
xES 

We define a "projection matrix" Il that induces a weighted projection onto the 
subspace X = {4>r IrE lRK} with projection weights equal to the steady-state 
probablilities. In particular, 

IlJ = arg!p.in IIJ - JIID. 
JEX 

It is easy to show that Il is given by Il = 4>(4)' D4»-l4>' D. 

We define an operator F : lRn t-+ lRn by 

F J = 9 + aPmax [4>rt, a] , 
where the max denotes a componentwise maximization. 

We have the following theorem that ensures soundness of the algorithm: 
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Theorem 1 Let the following conditions hold: 
(a) The Markov chain has a unique invariant distribution 7r that satisfies 7r' P = 7r', 

with 7r(x) > 0 for all xES. 
(b) The matrix «P has full column rank; that is, the ((basis functions" {¢k 1 k = 
1, . .. ,K} are linearly independent. 
(c) The step sizes 'Yt are nonnegative, nonincreasing, and predetermined. Further
more, they satisfy L~o 'Yt = 00, and L~o 'Yl < 00. 

We then have: 
(a) The algorithm converges with probability 1. 
(b) The limit of convergence r* is the unique solution of the equation 

IlF(<<pr*) = «Pr*. 

(c) FUrthermore, r* satisfies 

lI«pr* _ Q*IID ~ IIIlQ; = ~"IID. 
3.4 OVERVIEW OF PROOF 

The proof of Theorem 1 involves an analysis in a Euclidean space where the operator 
F and projection II serve as tools for interpreting the algorithm's dynamics. The 
ideas for this type of analysis can be traced back to Van Roy and Tsitsiklis (1996) 
and have since been used to analyze Sutton's temporal-difference learning algorithm 
(Tsitsiklis and Van Roy, 1996b). Due to space limitations, we only provide an 
overview of the proof. 

We begin by establishing that, with respect to the norm II ·11 D, P is a nonexpansion 
and F is a contraction. In the first case, we apply Jensen's inequality to obtain 

IIPJII1 = L7r(x) (LpxyJ(Y»)
2 

xES yES 

< L 7r(x) LPXyJ2(y) 
xES yES 

L L 7r(X)PXy J 2 (y) 
yES xES 

yES 

= IIJI11· 
The fact that F is a contraction now follows from the fact that 

I(F J)(x) - (F J)(x)1 ~ al(P J)(x) - (P J)(x)l, 

for any J, J E ~n and any state XES. 

Let s : ~m H ~m denote the "steady-state" expectation of the steps taken by the 
algorithm: 

s(r) = Eo [¢(Xt ) (g(Xt) + a max [¢' (xt+l)r, G(Xt+dJ - ¢' (xt)r) ], 

where Eo['] denotes the expectation with respect to steady-state probabilities. Some 
simple algebra gives 

s(r) = «P'D(F(4>r) - «pr) . 
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We focus on analyzing a deterministic algorithm of the form 

ft+l = ft + 'Yts(ft). 

The convergence of the stochastic algorithm we have proposed can be deduced 
from that of this deterministic algorithm through use of a theorem on stochastic 
approximation, contained in (Benveniste, et al., 1990). 

Note that the composition IIFO is a contraction with respect to 1/ . liD with con
traction coefficient a since projection is nonexpansive and F is a contraction. It 
follows that IIF (.) has a fixed point of the form <Pr" for some r" E Rm that uniquely 
satisfies 

<Pr" = IIF(<Pr"). 

To establish convergence, we consider the potential function U(r) = ~ Ilr - r"lIb· 
We have 

(V'U(r)y s(r) (r - r" ) I <pI D (F( <pr) - <pr) 

(r - r" r<PID(IIF(<Pr) - (I - II)F(<Pr) - <pr) 

( <Pr - <Pr" ) I D ( IIF( <pr) - <pr) , 

where the last equality follows because <pI DII = <pI D. Using the contraction prop
erty of F and the nonexpansion property of projection, we have 

UIIF(<pr) - <pr"UD = I/IIF(<pr) - IIF(<pr")IID 

~ al/<Pr - <pr"I/D' 

and it follows from the Cauchy-Schwartz inequality that 

(V'U(r)y s(r) = (<pr - <Pr" r D(IIF(<pr) - <Pr" + <Pr" - <pr) 

< II<pr - <pr"IIDI/IIF(<pr) - <pr"I/D -1I<pr - <pr"lIb 

< (a - 1 )1I<p/r - <Pr"l/b. 

Since <P has full column rank, it follows that (V'U(r))' s(r) ~ -EU(r), for some fixed 
E > 0, and f t converges to r" . 

We can further establish the desired error bound: 

II<Pr" - Q"UD < II<pr" - IIQ"UD + UIIQ" - Q"IID 

IIIIF(<pr") - IIQ"UD + IIIIQ" - Q"UD 
< all<Pr" - Q"IID + I/IIQ" - Q"IID, 

and it follows that 
I/<pr" - Q"I/D ~ I/IIQ" - Q"IID. 

I-a 

4 CONCLUSION 

We have proposed an algorithm for approximating Q-functions of optimal stopping 
problems using linear combinations of fixed basis functions. We have also presented 
a convergence theorem and overviewed the associated analysis. This paper has 
served a dual purpose of establishing a new methodology for solving difficult optimal 
stopping problems and providing a starting point for analyses of Q-learning-Iike 
algorithms when used in conjunction with function approximators. 



1088 J. N. Tsitsiklis and B. Van Roy 

The line of analysis presented in this paper easily generalizes in several directions. 
First, it extends to unbounded continuous state spaces. Second, it can be used to 
analyze certain variants of Q-Iearning that can be used for optimal stopping prob
lems where the underlying Markov processes are not irreducible and/or aperiodic. 
Rigorous analyses of some extensions, as well as the case that was discussed in this 
paper, are presented in a forthcoming full-length paper. 
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