NIPS Proceedingsβ

Convergence of Adversarial Training in Overparametrized Neural Networks

Part of: Advances in Neural Information Processing Systems 32 (NIPS 2019)

[PDF] [BibTeX] [Supplemental] [Reviews] [Author Feedback] [Meta Review]


Conference Event Type: Poster


Neural networks are vulnerable to adversarial examples, i.e. inputs that are imperceptibly perturbed from natural data and yet incorrectly classified by the network. Adversarial training \cite{madry2017towards}, a heuristic form of robust optimization that alternates between minimization and maximization steps, has proven to be among the most successful methods to train networks to be robust against a pre-defined family of perturbations. This paper provides a partial answer to the success of adversarial training, by showing that it converges to a network where the surrogate loss with respect to the the attack algorithm is within $\epsilon$ of the optimal robust loss. Then we show that the optimal robust loss is also close to zero, hence adversarial training finds a robust classifier. The analysis technique leverages recent work on the analysis of neural networks via Neural Tangent Kernel (NTK), combined with motivation from online-learning when the maximization is solved by a heuristic, and the expressiveness of the NTK kernel in the $\ell_\infty$-norm. In addition, we also prove that robust interpolation requires more model capacity, supporting the evidence that adversarial training requires wider networks.