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Abstract

Applying probabilistic models to reinforcement learning (RL) enables the uses
of powerful optimisation tools such as variational inference in RL. However, ex-
isting inference frameworks and their algorithms pose significant challenges for
learning optimal policies, for example, the lack of mode capturing behaviour in
pseudo-likelihood methods, difficulties learning deterministic policies in maximum
entropy RL based approaches, and a lack of analysis when function approxima-
tors are used. We propose VIREL, a theoretically grounded inference framework
for RL that utilises a parametrised action-value function to summarise future dy-
namics of the underlying MDP, generalising existing approaches. VIREL also
benefits from a mode-seeking form of KL divergence, the ability to learn deter-
ministic optimal polices naturally from inference, and the ability to optimise value
functions and policies in separate, iterative steps. Applying variational expectation-
maximisation to VIREL, we show that the actor-critic algorithm can be reduced
to expectation-maximisation, with policy improvement equivalent to an E-step
and policy evaluation to an M-step. We derive a family of actor-critic methods
from VIREL, including a scheme for adaptive exploration and demonstrate that our
algorithms outperform state-of-the-art methods based on soft value functions in
several domains.

1 Introduction

Efforts to combine reinforcement learning (RL) and probabilistic inference have a long history,
spanning diverse fields such as control, robotics, and RL [64, 62, 46, 47, 27, 74, 75, 73, 36]. For-
malising RL as probabilistic inference enables the application of many approximate inference tools
to reinforcement learning, extending models in flexible and powerful ways [35]. However, existing
methods at the intersection of RL and inference suffer from several deficiencies. Methods that
derive from the pseudo-likelihood inference framework [12, 64, 46, 26, 44, 1] and use expectation-
maximisation (EM) favour risk-seeking policies [34], which can be suboptimal. Yet another approach,
the MERL inference framework [35] (which we refer to as MERLIN), derives from maximum entropy
reinforcement learning (MERL) [33, 74, 75, 73]. While MERLIN does not suffer from the issues of
the pseudo-likelihood inference framework, it presents different practical difficulties. These methods
do not naturally learn deterministic optimal policies and constraining the variational policies to be
deterministic renders inference intractable [47]. As we show by way of counterexample in Section 2.2,
an optimal policy under the reinforcement learning objective is not guaranteed from the optimal
MERL objective. Moreover, these methods rely on soft value functions which are sensitive to a
pre-defined temperature hyperparameter.

Additionally, no existing framework formally accounts for replacing exact value functions with
function approximators in the objective; learning function approximators is carried out indepen-
dently of the inference problem and no analysis of convergence is given for the corresponding
algorithms.
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This paper addresses these deficiencies. We introduce VIREL, an inference framework that translates
the problem of finding an optimal policy into an inference problem. Given this framework, we demon-
strate that applying EM induces a family of actor-critic algorithms, where the E-step corresponds
exactly to policy improvement and the M-step exactly to policy evaluation. Using a variational EM
algorithm, we derive analytic updates for both the model and variational policy parameters, giving a
unified approach to learning parametrised value functions and optimal policies.

We extensively evaluate two algorithms derived from our framework against DDPG [38] and an
existing state-of-the-art actor-critic algorithm, soft actor-critic (SAC) [25], on a variety of OpenAI
gym domains [9]. While our algorithms perform similarly to SAC and DDPG on simple low
dimensional tasks, they outperform them substantially on complex, high dimensional tasks.

The main contributions of this work are: 1) an exact reduction of entropy regularised RL to prob-
abilistic inference using value function estimators; 2) the introduction of a theoretically justified
general framework for developing inference-style algorithms for RL that incorporate the uncertainty

in the optimality of the action-value function, Q̂ω(h), to drive exploration, but that can also learn
optimal deterministic policies; and 3) a family of practical algorithms arising from our framework that
adaptively balances exploration-driving entropy with the RL objective and outperforms the current
state-of-the-art SAC, reconciling existing advanced actor critic methods like A3C [43], MPO [1] and
EPG [10] into a broader theoretical approach.

2 Background

We assume familiarity with probabilistic inference [30] and provide a review in Appendix A.

2.1 Reinforcement Learning

Formally, an RL problem is modelled as a Markov decision process (MDP) defined by the tuple
〈S,A, r, p, p0, γ〉 [54, 59], where S is the set of states and A ⊆ R

n the set of available actions.
An agent in state s ∈ S chooses an action a ∈ A according to the policy a ∼ π(·|s), forming a
state-action pair h ∈ H, h := 〈s, a〉. This pair induces a scalar reward according to the reward
function rt := r(ht) ∈ R and the agent transitions to a new state s′ ∼ p(·|h). The initial state
distribution for the agent is given by s0 ∼ p0. We denote a sampled state-action pair at timestep
t as ht := 〈st, at〉. As the agent interacts with the environment using π, it gathers a trajectory
τ = (h0, r0, h1, r1, ...). The value function is the expected, discounted reward for a trajectory,
starting in state s. The action-value function or Q-function is the expected, discounted reward
for each trajectory, starting in h, Qπ(h) := Eτ∼pπ(τ |h) [

∑∞
t=0 γ

trt], where pπ(τ |h) := p(s1|h0 =

h)
∏∞

t′=1 p(st′+1|ht′)π(at|st). Any Q-function satisfies a Bellman equation T πQπ(·) = Qπ(·)
where T π

· := r(h) + γEh′∼p(s′|h)π(a′|s′) [·] is the Bellman operator. We consider infinite horizon

problems with a discount factor γ ∈ [0, 1). The agent seeks an optimal policy π∗ ∈ argmaxπ J
π,

where

Jπ = Eh∼p0(s)π(a|s) [Q
π(h)] . (1)

We denote optimal Q-functions as Q∗(·) := Qπ∗

(·) and the set of optimal policies Π∗ :=
argmaxπ J

π . The optimal Bellman operator is T ∗
· := r(h) + γEh′∼p(s′|h) [maxa′(·)].

2.2 Maximum Entropy RL

The MERL objective supplements each reward in the RL objective with an entropy term [61, 74, 75,

73], Jπ
merl := Eτ∼p(τ)

[

∑T−1
t=0 (rt − c log(π(at|st))

]

. The standard RL, undiscounted objective is

recovered for c→ 0 and we assume c = 1 without loss of generality. The MERL objective is often
used to motivate the MERL inference framework (which we call MERLIN) [34], mapping the problem
of finding the optimal policy, π∗

merl(a|s) = argmaxπ J
π
merl, to an equivalent inference problem. A full

exposition of this framework is given by Levine [35] and we discuss the graphical model of MERLIN

in comparison to VIREL in Section 3.3. The inference problem is often solved using a message passing
algorithm, where the log backward messages are called soft value functions due to their similarity
to classic (hard) value functions [63, 48, 25, 24, 35]. The soft Q-function is defined as Qπ

soft(h) :=

Eτ∼qπ(τ |h)

[

r0 +
∑T−1

t=1 (rt − log π(at|st))
]

, where qπ(τ |h) := p(s0|h)
∏T−1

t=0 p(st+1|ht)π(at|st).
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The corresponding soft Bellman operator is T π
soft· := r(h) + Eh′∼p(s′|h)π(a′|s′)[· − log π(a′|s′)].

Several algorithms have been developed that mirror existing RL algorithms using soft Bellman
equations, including maximum entropy policy gradients [35], soft Q-learning [24], and soft
actor-critic (SAC) [25]. MERL is also compatible with methods that use recall traces [21].
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Figure 1: A discrete MDP counterexample for op-
timal policy under maximum entropy.

We now outline key drawbacks of MERLIN. It is well-
understood that optimal policies under regularised
Bellman operators are more stochastic than under
their equivalent unregularised operators [20]. While
this can lead to improved exploration, the optimal
policy under these operators will still be stochastic,
meaning optimal deterministic policies are not learnt
naturally. This leads to two difficulties: 1) a de-
terministic policy can be constructed by taking the
action a∗ = argmaxa π

∗
merl(a|s), corresponding to

the maximum a posteriori (MAP) policy, however, in
continuous domains, finding the MAP policy requires
optimising the Q-function approximator for actions,
which is often a deep neural network. A common

approximation is to use the mean of a variational policy instead; 2) even if we obtain a good approxi-
mation, as we show below by way of counterexample, the deterministic MAP policy is not guaranteed
to be the optimal policy under Jπ. Constraining the variational policies to the set of Dirac-delta
distributions does not solve this problem either, since it renders the inference procedure intractable
[47, 48].

Next, we demonstrate that the optimal policy under Jπ cannot always be recovered from the
MAP policy under Jπ

merl. Consider the discrete state MDP as shown in Fig. 1, with action set

A = {a1, a2, a
1
1, · · · a

k1
1 } and state set S = {s0, s1, s2, s3, s4, s

1
1 · · · s

k1
1 , s5, · · · s5+k2}. All state

transitions are deterministic, with p(s1|s0, a1) = p(s1|s0, a2) = p(si1|s1, a
i
1) = 1. All other state

transitions are deterministic and independent of action taken, that is, p(sj |·, sj−1) = 1 ∀ j > 2 and

p(s5|·, s
i
1) = 1. The reward function is r(s0, a2) = 1 and zero otherwise. Clearly the optimal policy

under Jπ has π∗(a2|s0) = 1. Define a maximum entropy reinforcement learning policy as πmerl with
πmerl(a1|s0) = p1, πmerl(a2|s0) = (1− p1) and πmerl(a

i
1|s1) = pi1. For πmerl and k2 >> 5, we can

evaluate Jπ
merl for any scaling constant c and discount factor γ as:

Jπ
merl = (1− p1)(1− c log(1− p1))− p1

(

c log p1 + γc

k
∑

i=1

pi1 log p
i
1

)

. (2)

We now find the optimal MERL policy. Note that pi1 = 1
k

maximises the final term in Eq. (2).

Substituting for pi1 = 1
k1

, then taking derivatives of Eq. (2) with respect to p1, and setting to zero, we

find p∗1 = π∗
merl(a1|s0) as:

1− c log(1− p∗1) = γc log(k1)− c log p∗1,

=⇒ p∗1 =
1

k1
−γ exp

(

1
c

)

+ 1
,

hence, for any k1
−γ exp

(

1
c

)

< 1, we have p∗1 > 1
2 and so π∗ cannot be recovered from π∗

merl, even

using the mode action a1 = argmaxa π
∗
merl(a|s0). The degree to which the MAP policy varies from

the optimal unregularised policy depends on both the value of c and k1, the later controlling the
number of states with sub-optimal reward. Our counterexample illustrates that when there are large
regions of the state-space with sub-optimal reward, the temperature must be comparatively small to
compensate, hence algorithms derived from MERLIN become very sensitive to temperature. As we
discuss in Section 3.3, this problem stems from the fact that MERL policies optimise for expected
reward and long-term expected entropy. While initially beneficial for exploration, this can lead to
sub-optimal polices being learnt in complex domains as there is often too little a priori knowledge
about the MDP to make it possible to choose an appropriate value or schedule for c.

Finally, a minor issue with MERLIN is that many existing models are defined for finite-horizon
problems [35, 48]. While it is possible to discount and extend MERLIN to infinite-horizon problems,
doing so is often nontrivial and can alter the objective [60, 25].
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2.3 Pseudo-Likelihood Methods

A related but distinct approach is to apply Jensen’s inequality directly to the RL objective Jπ . Firstly,
we rewrite Eq. (1) as an expectation over τ to obtain J = Eh∼p0(s)π(a|s) [Q

π(h)] = Eτ∼p(τ) [R(τ)],

where R(τ) =
∑T−1

t=0 γtrt and p(τ) = p0(s0)π(a0|so)
∏T−1

t=0 p(ht+1|ht). We then treat p(R, τ) =
R(τ)p(τ) as a joint distribution, and if rewards are positive and bounded, Jensen’s inequality can
be applied, enabling the derivation of an evidence lower bound (ELBO). Inference algorithms
such as EM can then be employed to find a policy that optimises the pseudo-likelihood objective
[12, 64, 46, 26, 44, 1]. Pseudo-likelihood methods can also be extended to a model-based setting by
defining a prior over the environment’s transition dynamics. Furmston & Barber [19] demonstrate
that the posterior over all possible environment models can be integrated over to obtain an optimal
policy in a Bayesian setting.

Many pseudo-likelihood methods minimise KL(pO ‖ pπ), where pπ is the policy to be learnt and
pO is a target distribution monotonically related to reward [35]. Classical RL methods minimise
KL(pπ ‖ pO). The latter encourages learning a mode of the target distribution, while the former
encourages matching the moments of the target distribution. If the optimal policy can be represented
accurately in the class of policy distributions, optimisation converges to a global optimum and the
problem is fully observable, the optimal policy is the same in both cases. Otherwise, the pseudo-
likelihood objective reduces the influence of large negative rewards, encouraging risk-seeking policies.

3 VIREL

Before describing our framework, we state some relevant assumptions.
Definition 1 (Unique Maximum and Locally Smooth Function). Let f : X → Y be a function with
a unique maximum f(x∗) = supx f where the domain X is a compact set and range Y is bounded.
Let f be locally C

2 smooth about x∗, i.e., ∃ ∆ > 0 s.t.f(x) ∈ C
2 ∀ x ∈ {x|‖x− x∗‖ < ∆ }.

Assumption 1. The optimal action-value function for the reinforcement learning problem is finite
and strictly positive, i.e., 0 < Q∗(h) <∞ ∀ h ∈ H.

Any MDP for which rewards are lower bounded and finite, that is, R ⊂ [rmin,∞), satisfies Assump-
tion 1. To see this, we can construct a new MDP by adding rmin to the reward function, ensuring that
all rewards are positive and hence the optimal action-value function for the reinforcement learning
problem is finite and strictly positive. This does not affect the optimal solution. Now we introduce a

function approximator Q̂ω(h) ≈ Qπ(h) parametrised by ω ∈ Ω.
Assumption 2 (Exact Representability Under Optimisation). Our function approximator can repre-

sent the optimal Q-function, i.e., ∃ ω∗ ∈ Ω s.t. Q∗(·) = Q̂ω∗(·).

In Appendix F.1, we extend the work of Bhatnagar et al. [6] to continuous domains, demonstrating
that Assumption 2 can be neglected if projected Bellman operators are used.
Assumption 3 (Local Smoothness of Q-functions ). For ω∗ parametrising Q∗(h) in Assumption 2,
Qω∗(h) has a unique maximum and is locally smooth under Definition 1 for actions in any state.

This assumption is formally required for the strict convergence of a Boltzmann to a Dirac-delta distri-
bution and, as we discuss in Appendix F.4, is of more mathematical than practical concern.

3.1 Objective Specification

We now define an objective that we motivate by satisfying three desiderata: 1 In the limit of maximis-
ing our objective, a deterministic optimal policy can be recovered and the optimal Bellman equation
is satisfied by our function approximator; 2 when our objective is not maximised, stochastic policies
can be recovered that encourage effective exploration of the state-action space; and 3 our objective
permits the application of powerful and tractable optimisation algorithms from variational inference
that optimise the risk-neutral form of KL divergence, KL(pπ ‖ pO), introduced in Section 2.3.

Firstly, we define the residual error εω := c
p
‖TωQ̂ω(h) − Q̂ω(h)‖

p
p where Tω = T πω

· := r(h) +

γEh′∼p(s′|h)πω(a′|s′) [·] is the Bellman operator for the Boltzmann policy with temperature εω:

πω(a|s) :=
exp

(

Q̂ω(h)
εω

)

∫

A
exp

(

Q̂ω(h)
εω

)

da
. (3)
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We assume p = 2 and c = 1
|H| without loss of generality. Our main result in Theorem 2 proves

that finding a ω∗ that reduces the residual error to zero, i.e., εω∗ = 0, is a sufficient condition for

learning an optimal Q-function Q̂ω∗(h) = Q∗(h). Additionally, the Boltzmann distribution πω(a|s)

tends towards a Dirac-delta distribution πω(a|s) = δ(a = argmax′a Q̂ω∗(a′, s)) whenever εω → 0
(see Theorem 1), which is an optimal policy. The simple objective argmin(L(ω)) := argmin(εω)
therefore satisfies 1 . Moreover, when our objective is not minimised, we have εω > 0 and from
Eq. (3) we see that πω(a|s) is non-deterministic for all non-optimal ω. L(ω) therefore satisfies 2 as
any agent following πω(a|s) will continue exploring until the RL problem is solved. To generalise
our framework, we extend Tω· to any operator from the set of target operators Tω· ∈ T:
Definition 2 (Target Operator Set). Define T to be the set of target operators such that an optimal

Bellman operator for Q̂ω(h) is recovered when the Boltzmann policy in Eq. (3) is greedy with respect

to Q̂ω(h), i.e., T := {Tω · | limεω→0 πω(a|s) =⇒ TωQ̂ω(h) = T
∗Q̂ω(h)}.

As an illustration, we prove in Appendix C that the Bellman operator T πω
· introduced above is a

member of T and can be approximated by several well-known RL targets. We also discuss how
T πω

· induces a constraint on Ω due to its recursive definition. As we show in Section 3.2, there
exists an ω in the constrained domain that maximises the RL objective under these conditions, so an
optimal solution is always feasible. Moreover, we provide an analysis in Appendix F.5 to establish
that such a policy is an attractive fixed point for our algorithmic updates, even when we ignore this
constraint. Off-policy operators will not constrain Ω: by definition, the optimal Bellman operator
T ∗

· is a member of T and does not constrain Ω; similarly, we derive an off-policy operator based
on a Boltzmann distribution with a diminishing temperature in Appendix F.2 that is a member of T.
Observe that soft Bellman operators are not members of T as the optimal policy under Jπ

merl is not
deterministic, hence algorithms such as SAC cannot be derived from the VIREL framework.

One problem remains: calculating the normalisation constant to sample directly from the Boltzmann
distribution in Eq. (3) is intractable for many MDPs and function approximators. As such, we look
to variational inference to learn an approximate variational policy πθ(a|s) ≈ πω(a|s), parametrised
by θ ∈ Θ with finite variance and the same support as πω(a|s). This suggests optimising a new
objective that penalises πθ(a|s) when πθ(a|s) 6= πω(a|s) but still has a global maximum at εω = 0.
A tractable objective that meets these requirements is the evidence lower bound (ELBO) on the
unnormalised potential of the Boltzmann distribution, defined as {ω∗, θ∗} ∈ argmaxω,θ L(ω, θ),

L(ω, θ) := Es∼d(s)

[

Ea∼πθ(a|s)

[

Q̂ω(h)

εω

]

+ H (πθ(a|s))

]

, (4)

where qθ(h) := d(s)πθ(a|s) is a variational distribution, H (·) denotes the differential entropy of
a distribution, and d(s) is any arbitrary sampling distribution with support over S. From Eq. (4),
maximising our objective with respect to ω is achieved when εω → 0 and hence L(ω, θ) satisfies

1 and 2 . As we show in Lemma 1, H (·) in Eq. (4) causes L(ω, θ) → −∞ whenever πθ(a|s)
is a Dirac-delta distribution for all εω > 0. This means our objective heavily penalises premature
convergence of our variational policy to greedy Dirac-delta policies except under optimality. We
discuss a probabilistic interpretation of our framework in Appendix B, where it can be shown that

πω(a|s) characterises our model’s uncertainty in the optimality of Q̂ω(h).

We now motivate L(ω, θ) from an inference perspective: In Appendix D.1, we write L(ω, θ) in terms
of the log-normalisation constant of the Boltzmann distribution and the KL divergence between the
action-state normalised Boltzmann distribution, pω(h), and the variational distribution, qθ(h):

L(ω, θ) = ℓ(ω)− KL(qθ(h) ‖ pω(h))−H (d(s)), (5)

where ℓ(ω) := log

∫

H

exp

(

Q̂ω(h)

εω

)

dh, pω(h) :=
exp

(

Q̂ω(h)
εω

)

∫

H
exp

(

Q̂ω(h)
εω

)

dh
.

As the KL divergence in Eq. (5) is always positive and the final entropy term has no dependence on ω
or θ, maximising our objective for θ always reduces the KL divergence between πω(a|s) and πθ(a|s)
for any εω > 0, with πθ(a|s) = πω(a|s) achieved under exact representability (see Theorem 3).
This yields a tractable way to estimate πω(a|s) at any point during our optimisation procedure by

maximising L(ω, θ) for θ. From Eq. (5), we see that our objective satisfies 3 , as we minimise the
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mode-seeking direction of KL divergence, KL(qθ(h) ‖ pω(h)), and our objective is an ELBO, which
is the starting point for inference algorithms [30, 4, 17]. When the RL problem is solved and εω = 0,
our objective tends towards infinity for any variational distribution that is non-deterministic (see
Lemma 1). This is of little consequence, however, as whenever εω = 0, our approximator is the

optimal value function, Q̂ω∗(h) = Q∗(h) (Theorem 2), and hence, π∗(a|s) can be inferred exactly by

finding maxa′ Q̂ω∗(a′, s) or by using the policy gradient ∇θEd(s)πθ(a|s)

[

Q̂ω∗(h)
]

(see Section 4.2).

3.2 Theoretical Results

We now formalise the intuition behind 1 - 3 . Theorem 1 establishes the emergence of a Dirac-delta
distribution in the limit of εω → 0. To the authors’ knowledge, this is the first rigorous proof
of this result. Theorem 2 shows that finding an optimal policy that maximises the RL objective
in Eq. (1) reduces to finding the Boltzmann distribution associated with the parameters ω∗ ∈
argmaxω L(ω, θ). The existence of such a distribution is a sufficient condition for the policy to be
optimal. Theorem 3 shows that whenever εω > 0, maximising our objective for θ always reduces
the KL divergence between πω(a|s) and πθ(a|s), providing a tractable method to infer the current
Boltzmann policy.
Theorem 1 (Convergence of Boltzmann Distribution to Dirac Delta). Let pε : X → [0, 1] be a

Boltzmann distribution with temperature ε ∈ R≥0, pε(x) =
exp( f(x)

ε )
∫
X

exp( f(x)
ε )dx

, where f : X → Y is a

function that satisfies Definition 1. In the limit ε→ 0, pε(x)→ δ(x = supx′ f(x′)).
Proof. See Appendix D.2

Lemma 1 (Lower and Upper limits of L(ω, θ)). i) For any εω > 0 and πθ(a|s) = δ(a∗), we have

L(ω, θ) = −∞. ii) For Q̂ω(h) > 0 and any non-deterministic πθ(a|s), limεω→0 L(ω, θ) =∞.

Proof. See Appendix D.3.

Theorem 2 (Optimal Boltzmann Distributions as Optimal Policies). For ω∗ that maximises L(ω, θ)
defined in Eq. (4), the corresponding Boltzmann policy induced must be optimal, i.e., {ω∗, θ∗} ∈
argmaxω,θ L(ω, θ) =⇒ πω∗(a|s) ∈ Π∗.

Proof. See Appendix D.3.

Theorem 3 (Maximising the ELBO for θ). For any εω > 0, maxθ L(ω, θ) =
Ed(s) [minθ KL(πθ(a|s) ‖ πω(a|s))] with πω(a|s) = πθ(a|s) under exact representability.

Proof. See Appendix D.4.

3.3 Comparing VIREL and MERLIN Frameworks

Figure 2: Graphical models for MERLIN and
VIREL (variational approximations are dashed).

To compare MERLIN and VIREL, we consider the prob-
abilistic interpretation of the two models discussed in
Appendix B; introducing a binary variable O ∈ {0, 1}
defines a graphical model for our inference problem
whenever εω > 0. Comparing the graphs in Fig. 2,
observe that MERLIN models exponential cumulative
rewards over entire trajectories. By contrast, VIREL’s
variational policy models a single step and a function
approximator is used to model future expected rewards.
The resulting KL divergence minimisation for MERLIN is therefore much more sensitive to the value
of temperature, as this affects how much future entropy influences the variational policy. For VIREL,
temperature is defined by the model, and updates to the variational policy will not be as sensitive to
errors in its value or linear scaling as its influence only extends to a single interaction. We hypothesise
that VIREL may afford advantages in higher dimensional domains where there is greater chance of
encountering large regions of state-action space with sub-optimal reward; like our counterexample
from Section 2, c must be comparatively small to balance the influence of entropy in these regions to
prevent MERLIN algorithms from learning sub-optimal policies.

Theorem 1 demonstrates that, unlike in MERLIN, VIREL naturally learns optimal deterministic policies
directly from the optimisation procedure while still maintaining the benefits of stochastic policies
in training. While Boltzmann policies with fixed temperatures have been proposed before [49], as
we discuss in Appendix B, the adaptive temperature εω in VIREL’s Boltzmann policy has a unique

interpretation, characterising the model’s uncertainty in the optimality of Q̂ω(h); both πω(a|s) and

its variational approximation πθ(a|s) have an adaptive variance that reduces as Q̂ω(h) → Q∗(h),
allowing us to benefit from uncertainty-driven exploration when sampling under πθ(a|s).
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4 Actor-Critic and EM

We now apply the expectation-maximisation (EM) algorithm [13, 23] to optimise our objective
L(ω, θ). (See Appendix A for an exposition of this algorithm.) In keeping with RL nomenclature, we

refer to Q̂ω(h) as the critic and πθ(a|s) as the actor. We establish that the expectation (E-) step is
equivalent to carrying out policy improvement and the maximisation (M-)step to policy evaluation.
This formulation reverses the situation in most pseudo-likelihood methods, where the E-step is
related to policy evaluation and the M-step is related to policy improvement, and is a direct result
of optimising the forward KL divergence, KL(qθ(h) ‖ pω(h|O)), as opposed to the reverse KL
divergence used in pseudo-likelihood methods. As discussed in Section 2.3, this mode-seeking
objective prevents the algorithm from learning risk-seeking policies. We now introduce an extension
to Assumption 2 that is sufficient to guarantee convergence.
Assumption 4 (Universal Variational Representability). Every Boltzmann policy can be represented
as πθ(a|s), i.e., ∀ ω ∈ Ω ∃ θ ∈ Θ s.t. πθ(a|s) = πω(a|s).

Assumption 4 is strong but, like in variational inference, our variational policy πθ(a|s) provides
a useful approximation when Assumption 4 does not hold. As we discuss in Appendix F.1, using
projected Bellman errors also ensures that our M-step always converges no matter what our current
policy is.

4.1 Variational Actor-Critic

In the E-step, we keep the parameters of our critic ωk constant while updating the actor’s parameters
by maximising the ELBO with respect to θ: θk+1 ← argmaxθ L(ωk, θ). Using gradient ascent with
step size αactor, we optimise εωk

L(ωk, θ) instead, which prevents ill-conditioning and does not alter
the optimal solution, yielding the update (see Appendix E.1 for full derivation):

E-Step (Actor): θi+1 ← θi + αactor (εωk
∇θL(ωk, θ))|θ=θi ,

εωk
∇θL(ωk, θ) = Es∼d(s)

[

Ea∼πθ(a|s)

[

Q̂ωk
(h)∇θ log πθ(a|s)

]

+ εωk
∇θH (πθ(a|s))

]

. (6)

In the M-step, we maximise the ELBO with respect to ω while holding the parameters θk+1 constant.
Hence expectations are taken with respect to the variational policy found in the E-step: ωk+1 ←
argmaxω L(ω, θk+1). We use gradient ascent with step size αcritic(εωi

)2 to optimise L(ω, θk+1) to
prevent ill-conditioning, yielding (see Appendix E.2 for full derivation):

M-Step (Critic): ωi+1 ← ωi + αcritic(εωi
)2∇ωL(ω, θk+1)|ω=ωi

,

(εωi
)2∇ωL(ω, θk+1) = εωi

Ed(s)πθk+1
(a|s)

[

∇ωQ̂ω(h)
]

− Ed(s)πθk+1
(a|s)

[

Q̂ωi
(h)
]

∇ωεω. (7)

4.2 Discussion

From an RL perspective, the E-step corresponds to training an actor using a policy gradient method
[56] with an adaptive entropy regularisation term [69, 43]. The M-step update corresponds to a policy
evaluation step, as we seek to reduce the MSBE in the second term of Eq. (7). We derive ∇ωεω
exactly in Appendix E.3. Note that this term depends on (TωQ̂ω(h)− Q̂ω(h))∇ωTωQ̂ω(h), which
typically requires evaluating two independent expectations. For convergence guarantees, techniques
such as residual gradients [2] or GTD2/TDC [6] need to be employed to obtain an unbiased estimate
of this term. If guaranteed convergence is not a priority, dropping gradient terms allows us to use
direct methods [55], which are often simpler to implement. We discuss these methods further in
Appendix F.3 and provide an analysis in Appendix F.5 demonstrating that the corresponding updates
act as a variational approximation to Q-learning [68, 42]. A key component of our algorithm is
the behaviour when εω∗ = 0; under this condition, there is no M-step update (both εωk

= 0 and
∇ωεω = 0) and Qω∗(h) = Q∗(h) (see Theorem 2), so our E-step reduces exactly to a policy gradient
step, θk+1 ← θk + αactorEh∼d(s)πθ(a|s) [Q

∗(h)∇θ log πθ(a|s)], recovering the optimal policy in the

limit of convergence, that is, πθ(a|s)→ π∗(a|s).

From an inference perspective, the E-step improves the parameters of our variational distri-
bution to reduce the gap between the current Boltzmann posterior and the variational policy,
KL(πθ(a|s)) ‖ πωk

(a|s)) (see Theorem 3). This interpretation makes precise the intuition that

how much we can improve our policy is determined by how similar Q̂ωk
(h) is to Q∗(h), limiting
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policy improvement to the complete E-step: πθk+1
(a|s) = πωk

(a|s). We see that the common greedy

policy improvement step, πθk+1
(a|s) = δ(a ∈ argmaxa′(Q̂ωk

(a′, s))) acts as an approximation to
the Boltzmann form in Eq. (3), replacing the softmax with a hard maximum.

If Assumption 4 holds and any constraint induced by Tω· does not prevent convergence to a complete
E-step, the EM algorithm alternates between two convex optimisation schemes, and is guaranteed to
converge to at least a local optimum of L(ω, θ) [71]. In reality, we cannot carry out complete E- and
M-steps for complex domains, and our variational distributions are unlikely to satisfy Assumption 4.
Under these conditions, we can resort to the empirically successful variational EM algorithm [30],
carrying out partial E- and M-steps instead, which we discuss further in Appendix F.3.

4.3 Advanced Actor-Critic Methods

A family of actor-critic algorithms follows naturally from our framework: 1) we can use powerful
inference techniques such as control variates [22] or variance-reducing baselines by subtracting
any function that does not depend on the action [50], e.g., V (s), from the action-value function,
as this does not change our objective, 2) we can manipulate Eq. (6) to obtain variance-reducing
gradient estimators such as EPG [11], FPG [15], and SVG0 [28], and 3) we can take advantage of
d(s) being any general decorrelated distribution by using replay buffers [42] or empirically successful
asynchronous methods that combine several agents’ individual gradient updates at once [43]. As
we discuss in Appendix E.4, the manipulation required to derive the estimators in 2) is not strictly
justified in the classic policy gradient theorem [56] and MERL formulation [25].

MPO is a state-of-the-art EM algorithm derived from the pseudo-likelihood objective [1]. In its
derivation, policy evaluation does not naturally arise from either of its EM steps and must be carried
out separately. In addition, its E step is approximated, giving rise to the the one step KL regularised
update. As we demonstrate in Appendix G, under the probabilistic interpretation of our model,
including a prior of the form pφ(h) = U(s)πφ(a|s) in our ELBO and specifying a hyper-prior p(ω),
the MPO objective with an adaptive regularisation constant can be recovered from VIREL:

LMPO(ω, θ, φ) = Es∼d(s)

[

Ea∼πθ(a|s)

[

Q̂ω(h)

εω

]

− KL(πθ(a|s) ‖ πφ(a|s))

]

+ log p(ω).

We also show in Appendix G that applying the (variational) EM algorithm from Section 4 yields
the MPO updates with the missing policy evaluation step and without approximation in the E-step.

5 Experiments

We evaluate our EM algorithm using the direct method approximation outlined in Appendix F.3
with Tω, ignoring constraints on Ω. The aim of our evaluation is threefold: Firstly, as explained in
Section 3.1, algorithms using soft value functions cannot be recovered from VIREL. We therefore
demonstrate that using hard value functions does not affect performance. Secondly, we provide
evidence for our hypothesis stated in Section 3.3 that using soft value functions may harm performance
in higher dimensional tasks. Thirdly, we show that even under all practical approximations discussed,
the algorithm derived in Section 4 still outperforms advanced actor-critic methods.

We compare our methods to the state-of-the-art SAC2 and DDPG [38] algorithms on MuJoCo tasks in
OpenAI gym [9] and in rllab [14]. We use SAC as a baseline because Haarnoja et al. [25] show that
it outperforms PPO [52], Soft Q-Learning [24], and TD3 [18]. We compare to DDPG [38] because,
like our methods, it can learn deterministic optimal policies. We consider two variants: In the first
one, called virel, we keep the scale of the entropy term in the gradient update for the variational policy
constant α; in the second, called beta, we use an estimate ε̂ω of εω to scale the corresponding term
in Eq. (25). We compute ε̂ω using a buffer to draw a fixed number of samples Nε for the estimate.

To adjust for the relative magnitude of the first term in Eq. (25) with that of εω scaling the second term,

we also multiply the estimate ε̂ω by a scalar λ ≈ 1−γ
ravg

, where ravg is the average reward observed;

λ−1 roughly captures the order of magnitude of the first term and allows ε̂ω to balance policy changes

2We use implementations provided by the authors https://github.com/haarnoja/sac for v1 and
https://github.com/vitchyr/rlkit for v2.

8

https://github.com/haarnoja/sac
https://github.com/vitchyr/rlkit


0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+06 3.0e+06 3.5e+06

Steps

50000

75000

100000

125000

150000

175000

200000

225000

A
ve

ra
ge

 R
et

ur
n

HumanoidStandup-v2

beta
ddpg
sac
virel

Figure 3: Training curves on continuous control benchmarks gym-Mujoco-v2 : High-dimensional domains.

between exploration and exploitation. We found performance is poor and unstable without� . To
reduce variance, all algorithms use a value function networkV (� ) as a baseline and a Gaussian
policy, which enables the use of the reparametrisation trick. Pseudocode can be found in Appendix H.
All experiments use 5 random initialisations and parameter values are given in Appendix I.1.

Fig. 3 gives the training curves for the various algorithms on high-dimensional tasks for on gym-
mujoco-v2. In particular, in Humanoid-v2 (action space dimensionality: 17, state space dimensional-
ity: 376) and Ant-v2 (action space dimensionality: 8, state space dimensionality: 111), DDPG fails
to learn any reasonable policy. We believe that this is because the Ornstein-Uhlenbeck noise that
DDPG uses for exploration is insuf�ciently adaptive in high dimensions. While SAC performs better,
virel andbetastill signi�cantly outperform it. As hypothesised in Section 3.3, we believe that this
performance advantage arises because the gap between optimal unregularised policies and optimal
variational policies learnt underMERLIN is sensitive to temperaturec. This effect is exacerbated in
high dimensions where there may be large regions of the state-action space with sub-optimal reward.
All algorithms learn optimal policies in simple domains, the training curves for which can be found
in Fig. 8 in Appendix I.3. Thus, as the state-action dimensionality increases, algorithms derived from
VIREL outperform SAC and DDPG.

Fujimoto et al.[18] and van Hasselt et al.[67] note that using the minimum of two randomly initialised
action-value functions helps mitigate the positive bias introduced by function approximation in policy
gradient methods. Therefore, a variant of SAC uses two soft critics. We compare this variant of SAC
to two variants ofvirel: virel1, which uses two hardQ-functions andvirel2, which uses one hard and
one softQ-function. We scale the rewards so that the means of theQ-function estimates invirel2
are approximately aligned. Fig. 4 shows the training curves on three gym-Mujoco-v1 domains, with
additional plots shown in Fig. 7 in Appendix I.2. Again, the results demonstrate thatvirel1 andvirel2
perform on par with SAC in simple domains like Half-Cheetah and outperform it in challenging
high-dimensional domains like humanoid-gym and -rllab (17 and 21 dimensional action spaces, 376
dimensional state space).
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Figure 4: Training curves on continuous control benchmarks gym-Mujoco-v1.

6 Conclusion and Future Work

This paper presentedVIREL, a novel framework that recasts the reinforcement learning problem as an
inference problem using function approximators. We provided strong theoretical justi�cations for
this framework and compared two simple actor-critic algorithms that arise naturally from applying
variational EM on the objective. Extensive empirical evaluation shows that our algorithms perform
on par with current state-of-the-art methods on simple domains and substantially outperform them
on challenging high dimensional domains. As immediate future work, our focus is to �nd better
estimates of" ! to provide a principled method for uncertainty based exploration; we expect it to
help attain sample ef�ciency in conjunction with various methods like [39, 40]. Another avenue of
research would extend our framework to multi-agent settings, in which it can be used to tackle the
sub-optimality induced by representational constraints used in MARL algorithms [41].
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