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Abstract

Text-to-image generation, i.e. generating an image given a text description, is a
very challenging task due to the significant semantic gap between the two domains.
Humans, however, tackle this problem intelligently. We learn from diverse objects
to form a solid prior about semantics, textures, colors, shapes, and layouts. Given
a text description, we immediately imagine an overall visual impression using
this prior and, based on this, we draw a picture by progressively adding more
and more details. In this paper, and inspired by this process, we propose a novel
text-to-image method called LeicaGAN to combine the above three phases in a
unified framework. First, we formulate the multiple priors learning phase as a
textual-visual co-embedding (TVE) comprising a text-image encoder for learning
semantic, texture, and color priors and a text-mask encoder for learning shape
and layout priors. Then, we formulate the imagination phase as multiple priors
aggregation (MPA) by combining these complementary priors and adding noise for
diversity. Lastly, we formulate the creation phase by using a cascaded attentive
generator (CAG) to progressively draw a picture from coarse to fine. We leverage
adversarial learning for LeicaGAN to enforce semantic consistency and visual
realism. Thorough experiments on two public benchmark datasets demonstrate
LeicaGAN’s superiority over the baseline method. Code has been made available
at https://github.com/qiaott/LeicaGAN.

1 Introduction

Text-to-image (T2I) generation aims to generate a semantically consistent and visually realistic image
conditioned on a textual description. This task has recently gained a lot of attention in the deep
learning community due to both its significant relevance in a number of applications (such as photo
editing, art generation, and computer-aided design) and its challenging nature, mainly due to the
semantic gap between the domains and the high dimensionality of the structured output space.

Prior methods addressed this problem by first using a pre-trained text encoder to obtain a text feature
representation conveying the relevant visual information of a given text description. Then, this text
feature representation was served as input to generative neural networks (GANs) [5] to create an
image which visually matches the semantic content of the input text [23, 44, 37, 20]. Reed et al.
proposed using a deep convolutional and a recurrent text encoder together with generative networks
[23] for this purpose. In [44], the same text encoder was used and several GANs were stacked to
progressively generate more detailed images. Similar text encoders were also utilized in [37, 20],
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with Xu et al. adding an attention mechanism to condition different sub-regions of the image on
words which are relevant to those regions [37], while Qiao et al. proposed a mirror structure by
leveraging an extra caption model to enforce semantic consistency between the generated image and
the given text description [20].

Although impressive results have been obtained using these methods, they share a common limitation,
namely that the generator relies on a single text encoder to extract the embedded visual information.
On the one hand, the visual space is high dimensional and structured, so it is hard to extract a visual
vector covering many different aspects like low-level textures and colors and high-level semantics,
shapes, and layouts. On the other hand, an image is much more informative than a piece of text,
indeed, ‘a picture is worth a thousand words’. Therefore, it is challenging to embed text and image
into a common semantic space. We hypothesize that this limitation could be overcome by introducing
several semantic subspaces in which we decompose the image and respectively co-embedding the
decompositions with the text.

Going one step further, we analyze how humans achieve this goal. As humans, when we are asked to
draw a picture given a text description (for instance, ‘a small bird with blue wings and with a white
breast and collar’), we first build a coarse mental image about the core concept of ‘a bird’ before
enriching this initial mental image by progressively adding more details based on the given text; in
this case, for instance, the color of the wings and the breast. It is noteworthy that building this mental
image about the core concept is not a trivial process since it requires us to have learned a rich prior
about literal concepts, semantics, textures, colors, shapes and layouts of diverse objects. Taking the
online drawing game Quick Draw [21] developed by Jongejan et al. as an example, when people
from different countries draw a picture given a concept word, although there are some differences
between these drawings, they all share a common underlying appearance, i.e. the aforementioned
coarse mental image [22]. Additionally, the studies in [2, 19] identified two critical concepts termed
visual realism and intelligence realism, wherein the latter explaining the phenomenon by which a
child’s drawing may not be visually realistic because children just draw something based on what
they know, thereby conveying the core concept about an object.

Inspired by these studies, here we propose a novel T2I method called LeicaGAN to combine the above
“LEarn, Imagine and CreAte” phases in a unified adversarial learning framework. First, we formulate
the multiple priors learning phase as textual-visual co-embedding (TVE) comprising a text-image
encoder for learning semantics, textures and colors priors, and a text-mask encoder for learning shape
and layout priors. Then, we formulate the imagination phase as multiple priors aggregation (MPA)
by combining the previous complementary priors together and adding noise for diversity. Lastly,
we formulate the creation phase by using a cascaded attentive generator (CAG) to progressively
draw a picture in a coarse to fine manner. We leverage adversarial learning for LeicaGAN to enforce
semantic consistency and visual realism. The proposed method is evaluated on two public benchmark
datasets, namely CUB and Oxford-102. Both quantitative and qualitative results demonstrate the
superiority of LeicaGAN over the representative baseline method.

The main contributions of this work are as follows. First, we tackle the T2I problem by decomposing
it into three phases: multiple priors learning, imagination and creation - thereby mimicking how
humans solve this task. Second, we propose a novel method named LeicaGAN which includes a
textual-visual co-embedding network (TVE), a multiple priors aggregation network (MPA) and a
cascaded attentive generator (CAG) to respectively formulate the aforementioned three phases in
a unified framework trained via adversarial learning. Third, thorough experiments on two public
benchmark datasets demonstrate the effectiveness of the employment of the idea of LeicaGAN.

2 Related work

Text-to-Image generation. Generative adversarial networks (GANs) [6] have been extensively
used for image generation conditioned on discrete labels [15, 17], images [10, 47, 39] and text
[23, 44, 37, 46]. Reed et al. first proposed conditional GANs for T2I generation [23]. This work was
extended by stacking several attention-based GANs and generating images in multi-steps [44, 45, 37].
Zhang et al. adopted a hierarchically-nested framework in which multi-discriminators were used for
different layers of the generator [46]. These works have in common that a single text encoder was
used to obtain text embeddings. Another popular approach has been to provide more information for
image generation [9, 7, 11]. For example, Hong et al. added a layout generator that predicted the
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Figure 1: The LeicaGAN framework, which tackles the T2I problem by decomposing it into three phases,
which are 1. multiple priors learning via text-visual co-embedding (TVE), 2. imagination via multiple priors
aggregation (MPA) and 3. creation via a cascaded attentive generator (CAG).

bounding boxes and shapes of objects [9] and a similar idea was adopted in [7]. Johnson et al. built
up a scene graph dataset that aimed to provide clear layout information for the target image [11]. In
contrast to these methods, we focus on generating an image only conditioned on a text description,
from which we extract and aggregate different visual priors based on multiple text-encoders.

Attention generative model. Attention mechanisms, as one of the most influential ideas in the
deep learning community, have become an integral part of generative models because of the fact
that they can be conveniently modelled, e.g. spatially in images, temporally in language or even
in multi-modal generation. They also boost deep model performance by guiding the generators to
focus on the relevant information [43, 42, 40, 25, 37, 13, 3, 26, 12, 14, 32]. In this spirit, we also
adopt an attention mechanism in LeicaGAN to help the generators decide which parts of the textual
information to focus on when respectively refining the relatively coarse image from the previous step.

Multi-modal learning. The proposed textual-visual co-embedding method falls into the category
of pairwise multi-modal learning [4, 8, 30, 48]. In particular, our approach is motivated: (i) by
the learning process which focuses on individual pairs of samples and learning objectives, e.g. the
variants of the correlation loss [4]; and (ii) by the adversarial learning methods, especially with
respect to using an adversarial loss to reduce the domain gap between the text and visual input
[34, 41]. Specifically, we propose two textual-visual encoders to co-embed text-image and text-mask
pairs into two common subspaces in the multiple priors learning phase, which map the text to visual
semantics, textures, colors, shapes, and layouts accordingly.

3 LeicaGAN for Text-to-Image Generation

Given a text description t = {u1, u2 . . . uL} consisting of O words u, the goal of T2I generation is
to learn a mapping function to convert t to a corresponding visually realistic image v̂. We propose
LeicaGAN to tackle this problem, which includes an initial multiple priors learning phase, an
imagination phase, and a creation phase, which are shown in Figure 1 and presented in details below.

3.1 Multiple priors learning via Text-Visual co-Embedding (TVE)

Co-embedding textual-visual pairs in a common semantic space enables the text embeddings to convey
the visual information needed for the following image generation. A textual-visual co-embedding
model is trained with dataset S = {(tn, vn, cn), n = 1, 2, ...N}, where t ∈ T represents a text
description, v ∈ V represents visual information, which may be an image vI or a segmentation mask
vS , and c ∈ C represents a class label. The TVE model consists of a text encoder ET and an image
encoder EV . ET employs a recurrent neural network (RNN) [28] to encode the input text into a
word-level textual feature w and a sentence-level textual feature s. EV employs a convolutional
neural network (CNN) [31] to encode the visual information into a local visual feature l and a global
visual feature g. Mathematically,

w, s = ET (t); l, g = EV (v), (1)

where w ∈ RD×O is the concatenation of theO hidden states of RNN while s ∈ RD is the last hidden
state, l ∈ RD×H is extracted from an intermediate layer of the CNN while g ∈ RD is obtained from
the last pooling layer, D is the dimension of the embedding space, and H is the feature map size.
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Text-Image Encoder (EIT ). To project the input text t and the image vI to the same common
semantic space, we leverage an attentive model to calculate the similarity between a textual feature
(w or s) and a visual feature (l or g). The similarity matrix sw|l for all possible pairs of words in the
sentence and sub-regions in the image is calculated by

sw|l = softmaxH(lTw), (2)

where sw|l ∈ RH×O and softmaxH(·) indicates a normalization operation via a softmax function
calculated along the H-dimension. Then the word-level feature and local visual feature are fed into
an attention module, in which the weighted visual feature is calculated as:

l̂ = l · softmaxO(α1sw|l) (3)

where α1 is a smoothing factor and softmaxO indicates a softmax function calculated along the
O-dimension. Then the local-level image-text matching score between t and vI is obtained:

sw|l = log(

O∑
o=1

exp(α2 cos(l̂, w)))
1
α2 , (4)

where α2 is a smoothing factor and cos(·) represents the cosine similarity between the vectorization
of l̂ and w along the D-dimension. For a batch of text-image pairs, the posterior probability of t
matching with vI is defined as:

p(w|l) = exp(α3sw|l)

/∑
B

exp(α3sw′ |l′ ), (5)

where α3 is a smoothing factor and B is the batch size. Then, we can minimize the negative log
posterior probability that the images are matched with their corresponding text descriptions as follows:

Lw|l = −
1

N

N∑
n=1

log p(wn|ln). (6)

Symmetrically, we also minimize the Ll|w = − 1
N

∑N
n=1 log p(ln|wn) to match text descriptions

with images. Moreover, we also calculate the similarity between sentence-level text and global image
feature pairs (s, g) and minimize Ls|g and Lg|s likewise. The final similarity loss Lsim is defined as:

Lsim = Lw|l + Ll|w + Ls|g + Lg|s. (7)

Following the common practise [35, 38], we then employ a triplet loss to make the images belonging
to the same category can be embedded closely. Specially, we use global visual features to calculate
the triplet loss:

Ltriplet = −
1

N

N∑
n=1

max(‖ g − gp ‖2 − ‖ g − gn ‖2 + β1, 0) (8)

where max(·, 0) is the hinge loss function, gp and gn are the global features of the randomly sampled
positive and negative samples, β1 represents the violate margin.

Additionally, since images and text belong to different domains, it is difficult to directly project them
into the same feature space [18, 34, 41]. To reduce this domain gap, we adopt domain adversarial
learning proposed in [34] to adapt each domain to an underlying common domain. A modality
classifier Dmodal is applied to detect the real modality of the input, while the encoders try to
fool Dmodal by projecting the input into the underlying domain where paired text and image are
indistinguishable. The domain adversarial loss Ladv is defined as:

Ladv = − 1

N

N∑
n=1

LGT · (log Dmodal(gn) + log Dmodal(1− sn)), (9)

where LGT is a one-hot vector indicating the ground-truth modality label and Dmodal(·) is the
predicted modality probability of each input. The final loss LTI for the EIT is defined as:

LTI = γ1Lsim + γ2Ltriplet + γ3Ladv, (10)

where γ1, γ2 and γ3 are the loss weights.

Text-Mask Encoder (EMT ). To strengthen text embeddings conveying more shape and layout prior,
we also construct a text-mask encoder like the text-image encoder. They differ in the visual input
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where a segmentation mask vS is used instead of an image vI . Likewise, we train the text-mask
encoder by minimizing the following loss function:

LTM = γ4LTM
sim + γ5Lcls + γ6LTM

adv , (11)

where LTMsim and Ladv are the same loss functions defined in Eq. (7) and Eq. (9), γ4, γ5 and γ6 are
the loss weights. The classification loss Lcls is defined as:

Lcls = − 1

N

N∑
n=1

log p(cn|sn) + log p(cn|gn). (12)

3.2 Imagination via Multiple Priors Aggregation (MPA)

In the multiple priors learning phase, we obtain two types of text embeddings from the text-image
encoder EIT and text-mask encoder EMT respectively conveying visual information about the seman-
tics, textures and colors, and shapes and layouts. To mimic the humans’ imagination process, we
aggregate the learned priors within the two encoders given a text description t. It is formulated as

wI , sI = EI
T (t); wM , sM = EM

T (t), (13)

where wi ∈ RD×O and si ∈ RD, i ∈ {I,M}. Then, we fuse the sentence-level embeddings as
sIM = [W s

I sI ,W
s
MsM ], where [·] denotes the concatenate operation and W s

I ,W
s
M ∈ RK

2 ×D are
transformation matrices. After the fusion process, we obtain the mental image as: {z, sIM , wI , wM}.
z ∈ RK is a random noise sampled from a Gaussian distribution for diversity.

3.3 Creation via Cascaded Attentive Generators (CAG)

After obtaining the mental image in the imagination phase, we begin to draw it out in the creation
phase. However, combining all the relevant information to generate a photo-realistic image with
correct semantics is challenging. Carefully designed network architectures are critical to achieve
a good performance [44, 37, 46, 36, 43]. In this paper, we use the cascaded attentive generative
network [44, 37] to address this challenge.

Initial coarse image generation. In the first step, we feed the input U0 = [z, sIM ] into a generator
G0 to obtain an initial coarse image v̂0:

v̂0 = G0 (U0) . (14)

Attentive feature generation. During drawing, we humans enrich the coarse sketch with more and
more details by attending to specific regions. To mimic this process, we design an attention feature
generation module which produces two attentive word- and sentence-context features wiIM , siIM by
fusing the two pairs of textual features, i.e. (wI , wM ) and (sI , sM ), with the visual feature fi−1 of
the previously generated image v̂i−1. Mathematically, this is formulated as:

wi
IM =

∑
j∈{I,M}

δj
(
wi

j

(
softmax

(
wi

j
T
fi−1

)))
, (15)

where wij is the word embedding after a perception layer, i.e. wij = P ji wj , P
j
i ∈ RXi×D and

j ∈ {I,M}, fi−1 ∈ RXi×Yi is the feature map from an intermediate layer of the Gi−1. δI and δM
are two weights subjected to δI + δM = 1. Then, an attentive sentence feature is also learned to
provide a global guidance to the generators. Mathematically, this is formulated as:

siIM = ŝiIM ◦
(
softmax

(
fi−1 ◦ ŝiIM

))
, (16)

where ŝiIM is the sentence embedding after a perception layer, i.e. ŝiIM = QisIM , Qi ∈ RXi×K ,
and ◦ denotes the element-wise multiplication.

Image refinement via cascaded attentive generative networks. After obtaining the attentive word-
and sentence-context features, we input them with the image feature fi−1 together to the ith generator
Gi, i.e. Ui = [fi−1, s

i
IM , λww

i
IM ], where λw is a weight factor, to produce the ith image:

v̂i = Gi (fi−1, Ui) , i ∈ {1, 2, ...} . (17)

Images are progressively generated in these generators in a coarse-to-fine manner.
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3.4 Objective function

We leverage adversarial training on each Gi of LeicaGAN. As shown in the current state-of-the-art
[37, 46, 20], a carefully designed adversarial loss function is essential for stable training and optimal
performance. We therefore employ two adversarial losses: a visual realism adversarial loss to ensure
that the generators generate visually realistic images, and a text-image pair-aware adversarial loss to
guarantee the semantic consistency between the input text and the generated image, i.e.,

LGi = −
1

2
Ev̂i∼pv̂i

[log (Di (v̂i))]−
1

2
Ev̂i∼pv̂i

[log (Di (v̂i, t))] . (18)

We further use Lsim defined in Eq. (7) to constrain the generated images v̂i to share the same
semantics as the input text description t. It is noteworthy that the network weights of ET are kept
fixed while training the generators. The final objective function of the generator G is defined as:

LG =

m−1∑
i=0

LGi + L
i
sim(v̂i, t), (19)

where m is the number of generators. Accordingly, the discriminator Di is trained by minimizing the
following loss:

LDi = − 1
2
Evi∼pvi

[log (Di (vi))]− 1
2
Ev̂i∼pv̂i

[log (1−Di (v̂i))]

− 1
2
Evi∼pvi

[log (Di (vi, t))]− 1
2
Ev̂i∼pv̂i

[log (1−Di (v̂i, t))]
(20)

The final objective function of the discriminator D is defined as:

LD =

m−1∑
i=0

LDi . (21)

4 Experiments

4.1 Experiment settings

Datasets. We evaluated our model on two commonly used datasets, i.e. the CUB bird [33] and
Oxford-102 flower [16]. In contrast to previous works [44, 37], which processed these datasets into
class-disjoint training and testing sets, we randomly re-split them to ensure both training and testing
sets contain images from all classes resulting in two class-balanced datasets: CUB∗ containing 8,855
training and 2,933 testing data belonging to 200 categories, and Oxford∗ containing 7,034 training
and 1,155 testing data belonging to 102 categories. Each image in both datasets has 10 text captions.

Evaluation metrics. Following the common practice [44, 37, 20], the Inception Score [27] was
used to measure both the objectiveness and diversity of the generated images. The inception models
provided by [29] were used for testing models trained on the CUB∗ and Oxford-102∗. Additionally,
the R-precision introduced in [37] was used to evaluate the visual-semantic similarity between the
generated images and their corresponding text descriptions, We reported the precision score of top-5.

Implementation details. Following [37, 20], the text encoder ET was a pre-trained bi-directional
LSTM [28] and the image encoder EV was built upon the Inception-v3 model [31]. The visual local
features were obtained from the mixed_6e layer. The dimension D was 256, the sentence length
O was 18 and the image region size H was 299 × 299. The generator consisted of the proposed
attention module, two residual blocks, and an upsampling module followed by a convolutional layer.
The discriminators adopted the structure in [44]. The visual embedding dimension Xi was set to 32,
Yi = qi

2, where qi was 64, 128, and 256 for the three stages. α1, α2, α3 and λw were set to 4, 5, 10,
1. The balance weights δI = 0.8 and δM = 0.2. The weights for training TVE of LeicaGAN with the
best performance on the CUB bird dataset were γ1 = 1, γ2 = 1, γ3 = 4, γ4 = 1, γ5 = 1,γ6 = 0.5.
On the Oxford-102 flower dataset, the best weights were γ1 = 1, γ2 = 1, γ3 = 0, γ4 = 1, γ5 = 0.5,
γ6 = 0. Please see the appendix for more implementation details.

4.2 Main Results

Objective comparisons. To intuitively verfiy the effectiveness of the idea of LeicaGAN of employing
different text encoders, we chose the state-of-the-art T2I methods AttnGAN [37] as our baseline
model, as it only employs one text encoder and shares the similar structure of the generators. Table

6



Table 1: Inception Score results comparsion between At-
tnGAN and LeicaGAN on the original splits and new splits
of CUB and Oxford-102 datasets.

Model CUB Oxford-102 CUB* Oxford-102*

GAN-INT-CLS [23] 2.88±0.04 2.66±0.03 - -
GAWWN [24] 3.62±0.07 - - -
StackGAN [44] 3.70±0.04 3.20±0.01 - -
StackGAN++ [45] 4.04±0.05 - - -

AttnGAN [37] 4.36±0.03 3.75±0.02 5.45±0.06 3.57±0.02

LeicaGAN 4.62±0.06 3.92±0.02 5.69±0.06 3.80±0.01

Figure 2: Human study results.

Table 2: Inception Score and R-precision results of LeicaGAN with different weight settings.

Evaluation Metric Inception Score R-precision

CUB* Oxford-102* CUB* Oxford-102*

AttnGAN (Baseline) 5.45±0.06 3.57±0.01 81.45 82.33

LeicaGAN, w/oEMT 5.60±0.05 3.68±0.01 82.95 85.03
LeicaGAN, λw=0 5.63±0.04 3.73±0.02 84.10 85.77
LeicaGAN, δI=0.2 5.36±0.04 3.59±0.02 81.21 82.09
LeicaGAN, δI=0.4 5.39±0.05 3.50±0.01 81.37 82.53
LeicaGAN, δI=0.6 5.47±0.04 3.65±0.01 82.84 84.72
LeicaGAN, δI=0.8 5.69±0.06 3.80±0.01 85.28 85.81
LeicaGAN, δI=1.0 5.55±0.06 3.75±0.02 81.11 83.89

(a) a yellow bird with brown and white wings and a pointed bill.

(d) a small bird with a white belly and a dark brown on the rest of it.

(g) a flower has layers of pink petals which pale to white in the center.

AttnGAN LeicaGAN (w/o TME) LeicaGAN (!" = 0) LeicaGAN

(e) white bird with black stripes across the top of the head and the tail.

(b) a medium bird with a white belly, while the rest of the bird is blue.

(h) a flat pancake-like white pedaled flower with a round yellow center.

AttnGAN LeicaGAN (w/o TME) LeicaGAN (!" = 0) LeicaGAN

(c) this bird is white with red on it and has a very short beak.

(f) this small bird is white with tan feathers with striations of brown.

(i) a flower has long pink petals and a few yellow anthers in the middle.

AttnGAN LeicaGAN (w/o TME) LeicaGAN (!" = 0) LeicaGAN

Figure 3: Examples of images generated by AttnGAN and LeicaGAN with different weight settings.

1 shows the performance of both models on both datasets. As it can be seen, LeicaGAN achieved
the higher Inception Score and outperformed the baseline model by large margins, indicating the
effectiveness of employing two text encoders and showing that LeicaGAN can generate more diverse
images with better quality and semantic consistency.

In addition, to validate the effectiveness of various component choices of our method, we conducted
several comparative experiments by excluding/including these components. The results are shown in
Table 2. First, the weight δI in Eq. (15) used to balance the importance of the attentive features from
the different text encoders was studied. LeicaGAN δI = 0.8 achieved the best performance, showing
that the word features from both EIT and EMT had a positive impact on generator performance. The
text features fromEIT had a higher weight as they provided more essential visually related information
to the generators, e.g. color, texture and semantic information. Then, comparing LeicaGAN with and
without EMT , we can see that the employment of EMT helped LeicaGAN achieve a higher Inception
Score and R-precision on both datasets, demonstrating that the text features fromEMT indeed provided
extra visual information to the generators. Additionally, we also tested LeicaGAN with (λw=0) in
which only global text embeddings from EIT and EMT were used for the image generation. As shown
in Table 2, employing both local and global embeddings collaboratively led to significant performance
gains on both datasets. These results indicate the effectiveness of the employment of the collaborative
local and global attention model in the generators of LeicaGAN.
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