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We describe a family of learning algorithms that operate on a recurrent, symmetrically 
connected. neuromorphic network that. like the Boltzmann machine, settles in the 
presence of noise. These networks learn by modifying synaptic connection strengths on 
the basis of correlations seen locally by each synapse. We describe a version of the 
supervised learning algorithm for a network with analog activation functions. We also 
demonstrate unsupervised competitive learning with this approach. where weight 
saturation and decay play an important role. and describe preliminary experiments in 
reinforcement learning. where noise is used in the search procedure. We identify the 
above described phenomena as elements that can unify learning techniques at a physical 
microscopic level. 

These algorithms were chosen for ease of implementation in vlsi. We have designed a 
CMOS test chip in 2 micron rules that can speed up the learning about a millionfold 
over an equivalent simulation on a VAX lln80. The speedup is due to parallel analog 
computation for snmming and multiplying weights and activations. and the use of 
physical processes for generating random noise. The components of the test chip are a 
noise amplifier. a neuron amplifier. and a 300 transistor adaptive synapse. each of which 
is separately testable. These components are also integrated into a 6 neuron and 15 
synapse network. Finally. we point out techniques for reducing the area of the 
electronic correlational synapse both in technology and design and show how the 
algorithms we study can be implemented naturally in electronic systems. 

1. INTRODUCTION 

Ibere has been significant progress. in recent years. in modeling brain function as the collective 
behavior of highly interconnected networks of simple model neurons. This paper focuses on the 
issue of learning in these networks especially with regard to their implementation in an electronic 
system. Learning phenomena that have been studied include associative memoryllJ. supervised 
leaming by error correction(2) and by stochastic search(3). competitive learning(4) lS) reinforcement 
leamingI6). and other forms of unsupervised leaming(7). From the point of view of neural 
plausibility as well as electronic implementation. we particularly like learning algorithms that 
change synaptic connection strengths asynchronously and are based only on information 
available locally at the synapse. This is illustrated in Fig. 1. where a model synapse uses only the 
correlations of the neurons it connects and perhaps some weak global evaluation signal not 
specific to individual neurons to decide how to adjust its conductance. 
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Fig. 1. A local correlational synapse. 

We believe that a stochastic search procedure is most compatible with this viewpoint. Statistical 
procedures based on noise form the communication pathways by which global optimization can 
take place based only on the interaction of neurons. Search is a necessary part of any learning 
procedure as the network attempts to find a connection strength matrix that solves a particular 
problem. Some learning procedures attack the search directly by gradient following through error 
(orrection[8J (9J but electronic implementation requires specifying which neurons are input, 
tudden and output in advanC'e and nece!;sitates global control of the error correction[2J procedure 
m a way that requires specific connectivity and ~ynch!'Ony at the neural Jevel. There is also the 
question of how such procedures would work with unsupervised methods and whether they might 
get stuck in local minima. Stochastic processes can also do gradient foUowing but they are better 
at avoiding minima, are compatible with asynchronous updates and local weight adjustments, 
and, as we show in this paper, can generalize well to less supervifM!d learning. 

The phenomena we studied are 1) analog activation, 2) noise, 3) semi-local Hebbian synaptic 
modification, and 4) weight decay and saturation. These techniques were applied to problems in 
supervised, unsupervised, and reinforcement learning. The goal of the study was to see if these 
diverse learning styles can be unified at the microscopic level with a small set of physically 
plausible and electronically implementable phenomena. The hope is to point the way for 
powerful electronic learning systems in the future by elucidating the conditions and the types of 
circuits that may be necessary. It may also be true that the conditions for electronic learning may 
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have some bearing on the general principles of biologicalleaming. 

2. WCAL LEAltNlNG AND STOCHASl'IC SEARCH 

2.1 Supervised Learning in Recurrent Networks with Analog Activations 

We have previously shown! 10] how the supervised learning procedure of the Boltzmann 
machine(3) can be implemented in an electronic system. This system works on a recurrent, 
symmetrically connected network which can be characterized as settling to a minimum in its 
Liapunov function(l]!II). While this architecture may stretch our criterion of neural plausibility, it 
does provide for stability and analyzability. The feedback connectivity provides a way for a 
supervised learning procedure to propagate information back through the network as the 
stochastic search proceeds. More plausible would be a randomly connected network where 
symmetry is a statistical approximation and inhibition damps oscillations, but symmetry is more 
efficient and weD matched to our choice of learning rule and search procedure. 

We have extended our electronic model of the Boltzmann machine to include analog activations. 
Fig. 2 shows the model of the neuron we used and its tanh or sigmoid transfer function. The net 
input consists of the usual weighted sum of activations from other neurons but, in the case of 
Boltzmann machine learning, these are added to a noise signal chosen from a variety of 
distributions so that the neuron performs the physical computation: 

activation =1 (neti FI (EwijSj+noise ):::tanh(gain*neti) 

Instead of counting the number of on-on and off-off cooccurrences of neurons which a synapse 
connects, the correlation rule now defines the value of a cooccurrence as: 

Cij=/i*/i 

where Ii is the activation of neuron i which is a real value from -1 to 1. Note that this rule 
effectively counts both on-on and off-off cooccurrences in the high gain limit. In this limit, for 
Gaussian noise, the cumulative probability distribution for the neuron to have activation + 1 (on) 
is close to sigmoidal. The effect of noise "jitter" is illustrated at the bottom of the figure. The 
weight change rule is still: 

if Cij+ > Cij- then increment Wij .... else decrement 

where the plus phase clamps the output neurons in their desired states while the minus phase 
allows them to run free. 

As· mentioned, we have studied a variety of noise distributions other than those based on the 
Boltzmann distribution. The 2-2-1 XOR problem was selected as a test case since it has been 
shown! 10] to be easily caught in local minima. The gain was manipulated in conditions with no 
noise or with noise sampled from one of three distributions. The Gaussian distribution is closest 
to true electronic thermal noise such as used in our implementation, but we also considered a 
cut-off uniform distribution and a Cauchy distribution with long noise tails for comparison. The 
inset to Fig. 3 shows a histogram of samples from the noise distributions used. The noise was 
multiplied by the temperature to 'jitter' the transfer function. Hence. the jitter decreased as the 
annealing schedule proceeded. 
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Fig. 2. Electronic analog neuron. 

Fig. 3 shows average performance across 100 runs for the last 100 patterns of 2000 training 
pattern presentations. It can be seen that reducing the gain from a sharp step can improve 
learning in a small region of gain, even without noise. There seems to be an optimal gain level. 
However, the addition of noise for any distribution can substantially improve learning at all levels 
of gain. 
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2.2 Stochastic Competitive Learning 

We have studied how competitive leaming(4J[~) can be accomplished with stochastic local units. 
Mter the presentation of the input pattern. the network is annealed and the weight is increased 
between the winning cluster unit and the input units which are on. As shown in Fig. 4 this 
approach was applied to the dipole problem of Rumelhart and Zipser. A 4x4 pixel array input 
layer connects to a 2 unit competitive layer with recurrent inhibitory connections that are not 
adjusted. The inhibitory connections provide the competition by means of a winner-lake-all 
process as the network settles. The input patterns are dipoles - only two input units are turned 
OIl at each pattern presentatiOll and they must be physically adjacent. either vertically or 
horizontally. In this way, the network learns about the connectedness of the space and eventually 
divides it into two equal spatial regions with each of the cluster units responding only to dipoles 
from one of the halves. Rumelhart and Zipser renormalized the weights after each pattern and 
picked the winning unit as the one with the highest activation. Instead of explicit nonnalization 
of the weights. we include a decay term proportional to the weight. The weights between the 
input layer and cluster layer are incremented for on-on correlations, but here there are no 
alternating phases so that even this gross synchrony is not necessary. Indeed. if small time 
constants are introduced to the weight updates. no external timing should be needed. 

winner-lake-all 
cluster layer 

input/ayer 

Pig. 4. Competitive learning network for the dipole problem. 

Fig. S shows the results of several runs. A 1 at the po~ition of an input unit means that unit 1 of 
the cluster layer has the larger weight leading to it from that position. A + between two units 
means the dipole from these two units excites unit 1. A 0 and - means that unit 0 is the winner in 
the complementary case. Note that adjacent l's should always have a + between them since both 
weights to unit 1 are stronger. H, however, there is a 1 next to a 0, then there is a tension in the 
dipole and a competition for dominance in the cluster layer. We define a figure of merit called 
"surface tension" which is the number of such dipoles in dispute. The smaller the number, the 
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better. Note in Runs A and B, the number is reduced to 4, the minimum possible value, after 
2000 pattern presentations. The space is divided vertically and horizontally, respectively. Run C 
bas adopted a less favorable diagonal division with a surface tension of 6. 

Number of dipole pattern presentations 

0 200 800 1400 2000 

0-0-0-0 1+0-0+1 1+1+1+1 1+1+1+1 1+1+1+1 
+ + + + + + + - + + + + + + + + 

0-0-0-0 1+1+1+1 1+1+1-0 1+1+1+1 1+1+1+1 
RUn A + + - - + + - - + - + - - - - + 

0-0-0-0 1+1-0-0 1-0-0-0 0-0-0-0 0-0-0-0 
+ - - -

0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 

0-0-0-0 0-0-0-0 0-0-0+1 0-0-0-1 0-0-1+1 
- - - + - - + + - - - + - - + + 

0-0-0-0 0-0-0+1 0-0-1+1 0-0-1+1 0-0-1+1 
Run B - - - + - - + + - - + + - - + + 

0-0-0-0 1-0-1+1 0-0-1+1 0-0-1+1 0-0-1+1 
+ - + + - - + + - - + + - - + + 

0-0-0-0 1+0+1+1 0-0+1+1 0-0+1+1 0-0+1+1 

0-0-0-0 0+1+1+1 0+1+1+1 1+1+1+1 1+1+1+1 
- + + + - + + + + + + + - + + + 

0-0-0-0 0-1+1+1 0+1+1+1 0+1+1+1 0-0+1+1 
Run C - + + + - + + + - - + + - - + + 

0-0-0-0 0-1+1+1 0-0-0-0 0-0-0-0 0-0-0-1 
- - - + 

0- 0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-1 

Fig. 5. Results of competitive learning runs on the dipole problem. 

Table 1 sbows the result of several competitive algorithms compared when averaged over 100 
such runs. The deterministic algorithm of Rumelhart and Zipser gives an average surface tension 
of 4.6 while the stochastic procedure is almost as good. Note that noise is essential in belping the 
competitive layer settle. Without noise the surface tension is 9.8, sbowing that the winner-take­
all procedure is not working properly. 

Competitive learning algorithm 

Stochastic net with decay 
- anneal: T=3H T=1.0 
- no anneal: 70 @ T =1.0 

Stochastic net with renonnallzation 

Deterministic, winner-take-all 
(Rumelhart & Zipser) 

"surface tension" 

4.8 
9.8 

5.6 

4.6 

Table 1. Performance of competitive learning algorithms across 1 ()() runs. 

We also tried a procedure where, instead of decay, weights were renormalized. The model is that 
each neuron can support a maximum amount of weight leading into it. Biologically, this might 
be the area that other neurons can form synapses on, so that one synapse cannot increase its 
strength except at the expense of some of the others. Electronically, this can be implemented as 
















