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Abstract

Converting an n-dimensional vector to a probability distribution over n objects
is a commonly used component in many machine learning tasks like multiclass
classification, multilabel classification, attention mechanisms etc. For this, several
probability mapping functions have been proposed and employed in literature such
as softmax, sum-normalization, spherical softmax, and sparsemax, but there is very
little understanding in terms how they relate with each other. Further, none of the
above formulations offer an explicit control over the degree of sparsity. To address
this, we develop a unified framework that encompasses all these formulations as
special cases. This framework ensures simple closed-form solutions and existence
of sub-gradients suitable for learning via backpropagation. Within this framework,
we propose two novel sparse formulations, sparsegen-lin and sparsehourglass, that
seek to provide a control over the degree of desired sparsity. We further develop
novel convex loss functions that help induce the behavior of aforementioned
formulations in the multilabel classification setting, showing improved performance.
We also demonstrate empirically that the proposed formulations, when used to
compute attention weights, achieve better or comparable performance on standard
seq2seq tasks like neural machine translation and abstractive summarization.

1 Introduction

Various widely used probability mapping functions such as sum-normalization, softmax, and spherical
softmax enable mapping of vectors from the euclidean space to probability distributions. The
need for such functions arises in multiple problem settings like multiclass classification [1, 2],
reinforcement learning [3, 4] and more recently in attention mechanism [5, 6, 7, 8, 9] in deep neural
networks, amongst others. Even though softmax is the most prevalent approach amongst them, it
has a shortcoming in that its outputs are composed of only non-zeroes and is therefore ill-suited
for producing sparse probability distributions as output. The need for sparsity is motivated by
parsimonious representations [10] investigated in the context of variable or feature selection. Sparsity
in the input space offers benefits of model interpretability as well as computational benefits whereas
on the output side, it helps in filtering large output spaces, for example in large scale multilabel
classification settings [11]. While there have been several such mapping functions proposed in
literature such as softmax [4], spherical softmax [12, 13] and sparsemax [14, 15], very little is
understood in terms of how they relate to each other and their theoretical underpinnings. Further, for
sparse formulations, often there is a need to trade-off interpretability for accuracy, yet none of these
formulations offer an explicit control over the desired degree of sparsity.

Motivated by these shortcomings, in this paper, we introduce a general formulation encompassing all
such probability mapping functions which serves as a unifying framework to understand individual
formulations such as hardmax, softmax, sum-normalization, spherical softmax and sparsemax as spe-
cial cases, while at the same time helps in providing explicit control over degree of sparsity. With the
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aim of controlling sparsity, we propose two new formulations: sparsegen-lin and sparsehourglass.
Our framework also ensures simple closed-form solutions and existence of sub-gradients similar to
softmax. This enables them to be employed as activation functions in neural networks which require
gradients for backpropagation and are suitable for tasks that require sparse attention mechanism
[14]. We also show that the sparsehourglass formulation can extend from translation invariance to
scale invariance with an explicit control, thus helping to achieve an adaptive trade-off between these
invariance properties as may be required in a problem domain.

We further propose new convex loss functions which can help induce the behaviour of the above
proposed formulations in a multilabel classification setting. These loss functions are derived from a
violation of constraints required to be satisfied by the corresponding mapping functions. This way of
defining losses leads to an alternative loss definition for even the sparsemax function [14]. Through
experiments we are able to achieve improved results in terms of sparsity and prediction accuracies for
multilabel classification.

Lastly, the existence of sub-gradients for our proposed formulations enable us to employ them to
compute attention weights [5, 7] in natural language generation tasks. The explicit controls provided
by sparsegen-lin and sparsehourglass help to achieve higher interpretability while providing better
or comparable accuracy scores. A recent work [16] had also proposed a framework for attention;
however, they had not explored the effect of explicit sparsity controls. To summarize, our contributions
are the following:

• A general framework of formulations producing probability distributions with connections
to hardmax, softmax, sparsemax, spherical softmax and sum-normalization (Sec.3).

• New formulations like sparsegen-lin and sparsehourglass as special cases of the general
framework which enable explicit control over the desired degree of sparsity (Sec.3.2,3.5).

• A formulation sparsehourglass which enables us to adaptively trade-off between the trans-
lation and scale invariance properties through explicit control (Sec.3.5).

• Convex multilabel loss functions correponding to all the above formulations proposed by us.
This enable us to achieve improvements in the multilabel classification problem (Sec.4).
• Experiments for sparse attention on natural language generation tasks showing comparable

or better accuracy scores while achieving higher interpretability (Sec.5).

2 Preliminaries and Problem Setup

Notations: For K ∈ Z+, we denote [K] := {1, . . . ,K}. Let z ∈ RK be a real vector denoted as
z = {z1, . . . , zK}. 1 and 0 denote vector of ones and zeros resp. Let ∆K−1 := {p ∈ RK | 1Tp =
1,p ≥ 0} be the (K − 1)-dimensional simplex and p ∈ ∆K−1 be denoted as p = {p1, . . . , pK}. We
use [t]+ := max{0, t}. Let A(z) := {k ∈ [K] | zk = maxj zj} be the set of maximal elements of z.

Definition: A probability mapping function is a map ρ : RK → ∆K−1 which transforms a score
vector z to a categorical distribution (denoted as ρ(z) = {ρ1(z), . . . , ρK(z)}). The support of ρ(z)
is S(z) := {j ∈ [K] | ρj(z) > 0}. Such mapping functions can be used as activation function for
machine learning models. Some known probability mapping functions are listed below:

• Softmax function is defined as: ρi(z) = exp(zi)∑
j∈[K] exp(zj) , ∀i ∈ [K]. Softmax is easy to

evaluate and differentiate and its logarithm is the negative log-likelihood loss [14].
• Spherical softmax - Another function which is simple to compute and derivative-friendly:
ρi(z) =

z2i∑
j∈[K] z

2
j
, ∀i ∈ [K]. Spherical softmax is not defined for

∑
j∈[K] z

2
j = 0.

• Sum-normalization : ρi(z) = zi∑
j∈[K] zj

, ∀i ∈ [K]. It is not used in practice much as the

mapping is not defined if zi < 0 for any i ∈ [K] and for
∑
j∈[K] zj = 0.

The above mapping functions are limited to producing distributions with full support. Consider there
is a single value of zi significantly higher than the rest, its desired probability should be exactly 1,
while the rest should be grounded to zero (hardmax mapping). Unfortunately, that does not happen
unless the rest of the values tend to −∞ (in case of softmax) or are equal to 0 (in case of spherical
softmax and sum-normalization).
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(a) Softmax
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Figure 1: Visualization of probability mapping functions in two-dimension. The contour plots
show values of ρ1(z). The green line segment connecting (1,0) and (0,1) is the 1-dimensional
probability simplex. Each contour (here it is line) contains points in R2 plane which have the same
ρ1(z), the exact value marked on the contour line.

• Sparsemax recently introduced by [14] circumvents this issue by projecting the score vector
z onto a simplex [15]: ρ(z) = argminp∈∆K−1 ‖p − z‖22. This offers an intermediate
solution between softmax (no zeroes) and hardmax (zeroes except for the highest value).

The contour plots for softmax, sparsemax and sum-normalization in two-dimensions (z ∈ R2)
are shown in Fig.1. The contours of sparsemax are concentrated over a narrow region, while the
remaining region corresponds to sparse solutions. For softmax, the contour plots are spread over
the whole real plane, confirming the absence of sparse solutions. Sum-normalization is not defined
outside the first quadrant, and yet, the contours cover the whole quadrant, denying sparse solutions.

3 Sparsegen Activation Framework

Definition: We propose a generic probability mapping function inspired from the sparsemax formu-
lation (in Sec.2) which we call sparsegen:

ρ(z) = sparsegen(z; g, λ) = argmin
p∈∆K−1

‖p− g(z)‖22 − λ‖p‖22 (1)

where g : RK → RK is a component-wise transformation function applied on z. Here gi(z) denotes
the i-th component of g(z). The coefficient λ < 1 controls the regularization strength. For λ > 0, the
second term becomes negative L-2 norm of p. In addition to minimizing the error on projection of
g(z), Eq.1 tries to maximize the norm, which encourages larger probability values for some indices,
hence moving the rest to zero. The above formulation has a closed-form solution (see App. A.1
for solution details), which can be computed in O(K) time using the modified randomized median
finding algorithm as followed in [15] while solving the projection onto simplex problem.

The choices of both λ and g can help control the cardinality of the support set S(z), thus influencing
the sparsity of ρ(z). λ can help produce distributions with support ranging from full (uniform
distribution when λ→ 1−) to minimum (hardmax when λ→ −∞). Let S(z, λ1) denote the support
of sparsegen for a particular coefficient λ1. It is easy to show: if |S(z, λ1)| > |A(z)|, then there
exists λx > λ1 for an x < |S(z, λ1)| such that |S(z, λx)| = x. In other words, if a sparser solution
exists, it can be obtained by changing λ. The following result has an alternate interpretation for λ:

Result: The sparsegen formulation (Eq.1) is equivalent to the following, when γ = 1
1−λ (where

γ > 0): ρ(z) = argminp∈∆K−1 ‖p− γg(z)‖22.

The above result says that scaling g(z) by γ = 1
1−λ is equivalent to applying the negative L-2 norm

with λ coefficient when considering projection of g(z) onto the simplex. Thus, we can write:

sparsegen(z; g, λ) = sparsemax
( g(z)

1− λ
)
. (2)

This equivalence helps us borrow results from sparsemax to establish various properties for sparsegen.

Jacobian of sparsegen: To train a model with sparsegen as an activation function, it is essential
to compute its Jacobian matrix denoted by Jρ(z) := [∂ρi(z)/∂zj ]i,j for using gradient-based
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optimization techniques. We use Eq.2 and results from [14](Sec.2.5) to derive the Jacobian for
sparsegen by applying chain rule of derivatives:

Jsparsegen(z) = Jsparsemax

( g(z)

1− λ
)
× Jg(z)

1− λ (3)

where Jg(z) is Jacobian of g(z) and Jsparsemax(z) =
[
Diag(s) − ssT

|S(z)|

]
. Here s is an indicator

vector whose ith entry is 1 if i ∈ S(z). Diag(s) is a matrix created using s as its diagonal entries.

3.1 Special cases of Sparsegen: sparsemax, softmax and spherical softmax

Apart from λ, one can control the sparsity of sparsegen through g(z) as well. Moreover, certain
choices of λ and g(z) help us establish connections with existing activation functions (see Sec.2).
The following cases illustrate these connections (more details in App.A.2):

Example 1: g(z) = exp(z) (sparsegen-exp): exp(z) denotes element-wise exponentiation of z,
that is gi(z) = exp(zi). Sparsegen-exp reduces to softmax when λ = 1−∑j∈[K] e

zj , as it results in
S(z) = [K] as per Eq.14 in App.A.2.

Example 2: g(z) = z2 (sparsegen-sq): z2 denotes element-wise square of z. As observed for
sparsegen-exp, when λ = 1−∑j∈[K] z

2
j , sparsegen-sq reduces to spherical softmax.

Example 3 : g(z) = z,λ = 0: This case is equivalent to the projection onto the simplex objective
adopted by sparsemax. Setting λ 6= 0 leads the regularized extension of sparsemax as seen next.

3.2 Sparsegen-lin: Extension of sparsemax

The negative L-2 norm regularizer in Eq.4 helps to control the width of the non-sparse region (see
Fig.2 for the region plot in two-dimensions). In the extreme case of λ→ 1−, the whole real plane
maps to sparse region whereas for λ→ −∞, the whole real plane renders non-sparse solutions.

ρ(z) = sparsegen-lin(z) = argmin
p∈∆K−1

‖p− z‖22 − λ‖p‖22 (4)

B(1,0)

A(0,1)

z1−z1

z2

−z2

B(1,0)

A(0,1)

z2 = z1 + 1

z2 = z1 − 1

z2 = z1 + 1 − λ

z2 = z1 − 1 + λz(1, 1.5)

z0(1, 1.25)

p0(0.25, 0.75)

z′(1, 0.5)

z′′(1, 2.5)

z′′′(2, 0.5)

Sparse Region

Sparse Region

Figure 2: Sparsegen-lin: Region plot for z =
{z1, z2} ∈ R2 when λ = 0.5. ρ(z) is sparse in the
red region, whereas non-sparse in the blue region.
The dashed red lines depict the boundaries between
sparse and non-sparse regions. For λ = 0.5, points
like (z or z′) are mapped onto the sparse points A
or B. Whereas for sparsemax (λ = 0), they fall in
the blue region (the boundaries of sparsemax are
shown by lighter dashed red lines passing through
A and B). The point z0 lies in the blue region,
producing non-sparse solution. Interestingly more
points like z′′ and z′′′, which currently lie in the
red region can fall in the blue region for some
λ < 0. For λ > 0.5, the blue region becomes
smaller, as mores points map to sparse solutions.

3.3 Desirable properties for probability mapping functions

Let us enumerate below some properties a probability mapping function ρ should possess:

1. Monotonicity: If zi ≥ zj , then ρi(z) ≥ ρj(z). This does not always hold true for sum-
normalization and spherical softmax when one or both of zi, zj is less than zero. For sparsegen, both
gi(z) and gi(z)/(1− λ) should be monotonic increasing, which implies λ needs to be less than 1.

2. Full domain: The domain of ρ should include negatives as well as positives, i.e. Dom(ρ) ∈ RK .
Sum-normalization does not satisfy this as it is not defined if some dimensions of z are negative.

4



3. Existence of Jacobian: This enables usage in any training algorithm where gradient-based
optimization is used. For sparsegen, the Jacobian of g(z) should be easily computable (Eq.3).

4. Lipschitz continuity: The derivative of the function should be upper bounded. This is important
for the stability of optimization technique used in training. Softmax and sparsemax are 1-Lipschitz
whereas spherical softmax and sum-normalization are not Lipschitz continuous. Eq.3 shows the
Lipschitz constant for sparsegen is upper bounded by 1/(1−λ) times the Lipschitz constant for g(z).

5. Translation invariance: Adding a constant c to every element in z should not change the output
distribution : ρ(z + c1) = ρ(z). Sparsemax and softmax are translation invariant whereas sum-
normalization and spherical softmax are not. Sparsegen is translation invariant iff for all c ∈ R there
exist a c̃ ∈ R such that g(z + c1) = g(z) + c̃1. This follows from Eq.2.

6. Scale invariance: Multiplying every element in z by a constant c should not change the output
distribution : ρ(cz) = ρ(z). Sum-normalization and spherical softmax satisfy this property whereas
sparsemax and softmax are not scale invariant. Sparsegen is scale invariant iff for all c ∈ R there
exist a ĉ ∈ R such that g(cz) = g(z) + ĉ1. This also follows from Eq.2.

7. Permutation invariance: If there is a permutation matrix P , then ρ(Pz) = P ρ(z). For sparsegen,
the precondition is that g(z) should be a permutation invariant function.

8. Idempotence: ρ(z) = z, ∀z ∈ ∆K−1. This is true for sparsemax and sum-normalization. For
sparsegen, it is true if and only if g(z) = z, ∀z ∈ ∆K−1 and λ = 0.

In the next section, we discuss in detail about the scale invariance and translation invariance properties
and propose a new formulation achieving a trade-off between these properties.

3.4 Trading off Translation and Scale Invariances

As mentioned in Sec.1, scale invariance is a desirable property to have for probability mapping
functions. Consider applying sparsemax on two vectors z = {0, 1}, z̄ = {100, 101} ∈ R2. Both
would result in {0, 1} as the output. However, ideally z̄ should have mapped to a distribution
nearer to {0.5, 0.5} instead. Scale invariant functions will not have such a problem. Among the
existing functions, only sum-normalization and spherical softmax satisfy scale invariance. While
sum-normalization is only defined for positive values of z, spherical softmax is not monotonic or
Lipschitz continuous. In addition, both of these methods are also not defined for z = 0, thus making
them unusable for practical purposes. It can be shown that any probability mapping function with the
scale invariance property will not be Lipschitz continuous and will be undefined for z = 0.

A recent work[13] had pointed out the lack of clarity over whether scale invariance is more desired
than the translation invariance property of softmax and sparsemax. We take this into account to
achieve trade-off between the two invariances. In the usual scale invariance property, scaling vector z
essentially results in another vector along the line connecting z and the origin. That resultant vector
also has the same output probability distribution as the original vector (See Sec. 3.3). We propose to
scale the vector z along the line connecting it with a point (we call it anchor point henceforth) other
than the origin, yet achieving the same output. Interestingly, the choice of this anchor point can act as
a control to help achieve a trade-off between scale invariance and translation invariance.

Let a vector z be projected onto the simplex along the line connecting it with an anchor point
q = (−q, . . . ,−q) ∈ RK , for q > 0 (See Fig.3a for K = 2). We choose g(z) as the point where this
line intersects with the affine hyperplane 1T ẑ = 1 containing the probability simplex. Thus, g(z)

is set equal to αz + (1− α)q, where α = 1+Kq∑
i zi+Kq

(we denote it as α(z) as α is a function of z).
From the translation invariance property of sparsemax, the resultant mapping function can be shown
equivalent to considering g(z) = α(z)z in Eq.1. We refer to this variant of sparsegen assuming
g(z) = α(z)z and λ = 0 as sparsecone.

Interestingly, when the parameter q = 0, sparsecone reduces to sum-normalization (scale invariant)
and when q →∞, it is equivalent to sparsemax (translation invariant). Thus the parameter q acts as a
control taking sparsecone from scale invariance to translation invariance. At intermediate values (that
is, for 0 < q < ∞), sparsecone is approximate scale invariant with respect to the anchor point q.
However, it is undefined for z where

∑
i zi < −Kq (beyond the black dashed line shown in Fig.3a).

In this case the denominator term of α(z) (that is,
∑
i zi + Kq) becomes negative destroying the

monotonicity of α(z)z. Also note that sparsecone is not Lipschitz continuous.
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Figure 3: (a) Sparsecone: The vector z maps to a point p on the simplex along the line connecting
to the point q = (−q,−q). Here we consider q = 1. The red region corresponds to sparse region
whereas blue covers the non-sparse region. (b) Sparsehourglass: For the vector z′ in the positive
half-space, the mapping to the solution p′ can be obtained similarly as sparsecone. For the vector z
in the negative half-space, a mirror point z̃ needs to be found, which leads to the solution p.

3.5 Proposed Solution: Sparsehourglass

To alleviate the issue of monotonicity when
∑
i zi < −Kq, we choose to restrict applying sparsecone

only for the positive half-space HK+ := {z ∈ RK | ∑i zi ≥ 0}. For the remaining negative half-
space HK− := {z ∈ RK | ∑i zi < 0}, we define a mirror point function to transform to a point in
HK+ , on which sparsecone can be applied. Thus the solution for a point in the negative half-space is
given by the solution of its corresponding mirror point in the positive half-space. This mirror point
function has some necessary properties (see App. A.4 for details), which can be satisfied by defining
m: mi(z) = zi −

2
∑

j zj

K , ∀i ∈ [K]. Interestingly, this can alternatively be achieved by choosing
g(z) = α̂(z)z, where α̂ is a slight modification of α given by α̂(z) = 1+Kq

|
∑

i zi|+Kq
. This leads to the

definition of a new probability mapping function (which we call sparsehourglass):

ρ(z) = sparsehourglass(z) = argmin
p∈∆K−1

∥∥∥p− 1 +Kq

|∑i∈[K] zi|+Kq
z
∥∥∥2

2
(5)

Like sparsecone, sparsehourglass also reduces to sparsemax when q → ∞. Similarly, q = 0 for
sparsehourglass leads to a corrected version of sum-normalization (we call it sum normalization++ ),
which works for the negative domain as well unlike the original version defined in Sec.2. Another
advantage of sparsehourglass is that it is Lipschitz continuous with Lipschitz constant equal to (1+ 1

Kq )

(proof details in App.A.5). Table.1 summarizes all the formulations seen in this paper and compares
them against the various important properties mentioned in Sec.3.3. Note that sparsehourglass is
the only probability mapping function which satisfies all the properties. Even though it does not
satisfy both scale invariance and translation invariance simultaneously, it is possible to achieve these
separately through different values of q parameter, which can be decided independent of z.

4 Sparsity Inducing Loss Functions for Multilabel Classification

An important usage of such sparse probability mapping functions is in the output mapping of
multilabel classification models. Typical multilabel problems have hundreds of possible labels or
tags, but any single instance has only a few tags [17]. Thus, a function which takes in a vector in RK
and outputs a sparse version of the vector is of great value.

Given training instances (xi,yi) ∈ X × {0, 1}K , we need to find a model function f : X → RK
that produces score vector over the label space, which on application of ρ : RK → ∆K−1 (the
sparse probability mapping function in question) leads to correct prediction of label vector yi. Define
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Table 1: Summary of the properties satisfied by probability mapping functions. Here 4 denotes
‘satisfied in general’, 7 signifies ‘not satisfied’ and Xsays ‘satisfied for some constant parameter
independent of z’. Note that PERMUTATION INV and existence of JACOBIAN are satisfied by all.

FUNCTION IDEMPOTENCE MONOTONIC TRANSLATION INV SCALE INV FULL DOMAIN LIPSCHITZ

SUM NORMALIZATION 4 7 7 4 7 ∞
SPHERICAL SOFTMAX 7 7 7 4 7 ∞
SOFTMAX 7 4 4 7 4 1
SPARSEMAX 4 4 4 7 4 1

SPARSEGEN-LIN X 4 4 7 4 1/(1− λ)
SPARSEGEN-EXP 7 4 7 7 4 ∞
SPARSEGEN-SQ 7 7 7 7 4 ∞
SPARSECONE 4 7 X X 7 ∞
SPARSEHOURGLASS 4 4 X X 4 (1 + 1/Kq)
SUM NORMALIZATION++ 4 4 7 4 4 ∞

ηi := yi/‖yi‖1, which is a probability distribution over the labels. Considering a loss function
L : ∆K−1 ×∆K−1 → [0,∞) and representing zi := f(xi), a natural way for training using ρ is to
find a function f : X → RK that minimises the error R(f) below over a hypothesis class F :

R(f) =

M∑
i=1

L (ρ(zi),ηi) (6)

In the prediction phase, for a test instance x, one can simply predict the non-zero elements in the
vector ρ(f∗(x)) where f∗ is the minimizer of the above training objective R(f).

For all cases where ρ produces sparse probability distributions, one can show that the training
objective R above is highly non-convex in f , even for the case of a linear hypothesis class F .
However, if we remove the strict requirement of the training objective depending on ρ(z) (as in
Eq.6), and use a loss function which can work with z directly, a convex objective is possible. We,
thus, design a loss function L : RK × ∆K−1 → [0,∞) such that L(z,η) = 0 only if ρ(z) = η.
To derive such a loss function, we proceed by enumerating a list of constraints which will be
satisfied by the zero-loss region in the K-dimensional space of the vector z. For sparsehourglass,
the closed-form solution is given by ρi(z) = [α̂(z)zi − τ(z)]+ (see App.A.1). This enables us to
list down the following constraints for zero loss: (1) α̂(z)(zi − zj) = 0, ∀i, j |ηi = ηj 6= 0, and
(2) α̂(z)(zi − zj) ≥ ηi, ∀i, j |ηi 6= 0, ηj = 0. The value of the loss when any such constraints
is violated is simply determined by piece-wise linear functions, which lead to the following loss
function for sparsehourglass:

Lsparsehg,hinge(z,η) =
∑
i,j

ηi 6=0,ηj 6=0

∣∣zi − zj∣∣+
∑
i,j

ηi 6=0,ηj=0

max
{ ηi
α̂(z)

− (zi − zj), 0
}
.

(7)

It can be easily proved that the above loss function is convex in z using the properties that both sum
of convex functions and maximum of convex functions result in convex functions. The above strategy
can also be applied to derive a multilabel loss function for sparsegen-lin:

Lsparsegen-lin,hinge(z,η) =
1

1− λ
∑
i,j

ηi 6=0,ηj 6=0

|zi − zj |+
∑
i,j

ηi 6=0,ηj=0

max
{
ηi −

zi − zj
1− λ , 0

}
.

(8)

The above loss function for sparsegen-lin can be used to derive a multilabel loss for sparsemax by
setting λ = 0 (which we use in our experiments for “sparsemax+hinge”) . The piecewise-linear
losses proposed in this section based on violation of constraints are similar to the well-known
hinge loss, whereas the sparsemax loss proposed by [14] (which we use in our experiments for
“sparsemax+huber”) has connections with Huber loss. We have shown through our experiments in
next section, that hinge loss variants for multilabel classification work better than Huber loss variants.

5 Experiments and Results

Here we present two sets of evaluations for the proposed probability mapping functions and loss
functions. First, we apply them on the multilabel classification task studying the effect of varying
label density in synthetic dataset, followed by evaluation on real multilabel datasets. Next, we report
results of sparse attention on NLP tasks of machine translation and abstractive summarization.
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5.1 Multilabel Classification

We compare the proposed activations and loss functions for multilabel classification with both
synthetic and real datasets. We use a linear prediction model followed by a loss function during
training. During test time, the corresponding activation is directly applied to the output of the linear
model. We consider the following activation-loss pairs: (1) softmax+log: KL-divergence loss applied
on top of softmax outputs, (2) sparsemax+huber: multilabel classification method from [14], (3)
sparsemax+hinge: hinge loss as in Eq.8 with λ = 0 is used during training compared to Huber loss
in (2), and (4) sparsehg+hinge: for sparsehourglass (in short sparsehg), loss in Eq.7 is used during
training. Please note as we have a convex system of equations due to an underlying linear prediction
model, applying Eq.8 in training and applying sparsegen-lin activation during test time produces the
same result as sparsemax+hinge. For softmax+log, we used a threshold p0, above which a label is
predicted to be “on”. For others, a label is predicted “on” if its predicted probability is non-zero. We
tune hyperparams q for sparsehg+hinge and p0 for softmax+log using validation set.

5.1.1 Synthetic dataset with varied label density

We use scikit-learn for generating synthetic datasets (details in App.A.6). We conducted experiments
in three settings: (1) varying mean number of labels per instance, (2) varying range of number of
labels and, (3) varying document length. In the first setting, we study the ability to model varying
label sparsity. We draw number of labels N uniformly at random from set {µ − 1, µ, µ + 1}
where µ ∈ {2. . . 9} is mean number of labels. For the second setting we study how these models
perform when label density varies across instances. We draw N uniformly at random from set
{5 − r, . . . , 5 + r}. Parameter r controls variation of label density among instances. In the third
setting we experiment with different document lengths, we draw N from Poisson with mean 5 and
vary document length L from 200 to 2000. In first two settings document length was fixed to 2000.

We report F-score2 and Jensen-Shannon divergence (JSD) on test set in our results.
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Figure 4: Sparsity comparison

Fig.5 shows F-score on test sets in the three experimen-
tal settings. We can observe that sparsemax+hinge and
sparsehg+hinge consistently perform better than sparse-
max+huber in all three cases, especially the label distributions
are sparser. Note that sparsehg+hinge performs better than
sparsemax+hinge in most cases. From empirical comparison
between sparsemax+hinge and sparsemax+huber, we can con-
clude that the proposed hinge loss variants are better in produc-
ing sparser and and more accurate predictions. This observation
is also supported in our analysis of sparsity in outputs (see Fig.4
- lower the curve the sparser it is - this is analysis is done cor-
responding to the setting in Fig.5a), where we find that hinge
loss variants encourage more sparsity. We also find the hinge loss variants are doing better than
softmax+log in terms of the JSD metric (details in App.A.7.1).

5.1.2 Real Multilabel datasets

We further experiment with three real datasets3 for multilabel classification: Birds, Scene and
Emotions. The experimental setup and baselines are same as that for synthetic dataset described in
Sec.5.1.1. For each of the datasets, we consider only those examples with atleast one label. Results
are shown in Table 3 in App.A.7.2. All methods give comparable results on these benchmark datasets.

5.2 Sparse Attention for Natural Language Generation

Here we demonstrate the effectiveness of our formulations experimentally on two natural language
generation tasks: neural machine translation and abstractive sentence summarization. The purpose
of these experiments are two fold: firstly, effectiveness of our proposed formulations sparsegen-lin
and sparsehourglass in attention framework on these tasks, and secondly, control over sparsity leads
to enhanced interpretability. We borrow the encoder-decoder architecture with attention (see Fig.7
in App.A.8). We replace the softmax function in attention by our proposed functions as well as

2Micro-averaged F1 score.
3Available at http://mulan.sourceforge.net/datasets-mlc.html
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Figure 5: F-score on multilabel classification synthetic dataset.

Table 2: Sparse Attention Results. Here R-1, R-2 and R-L denote the ROUGE scores.

Attention
TRANSLATION SUMMARIZATION

FR-EN EN-FR Gigaword DUC 2003 DUC 2004
BLEU BLEU R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

softmax 36.38 36.00 34.80 16.64 32.15 27.95 9.22 24.54 30.68 12.24 28.12
softmax (with temp.) 36.63 36.08 35.00 17.15 32.57 27.78 8.91 24.53 31.64 12.89 28.51
sparsemax 36.73 35.78 34.89 16.88 32.20 27.29 8.48 24.04 30.80 12.01 28.04
sparsegen-lin 37.27 35.78 35.90 17.57 33.37 28.13 9.00 24.89 31.85 12.28 29.13
sparsehg 36.63 35.69 35.14 16.91 32.66 27.39 9.11 24.53 30.64 12.05 28.18

sparsemax as baseline. In addition we use another baseline where we tune for the temperature in
softmax function. More details are provided in App.A.8.
Experimental Setup: In our experiments we adopt the same experimental setup followed by [16]
on top of the OpenNMT framework [18]. We varied only the control parameters required by our
formulations. The models for the different control parameters were trained for 13 epochs and the
epoch with the best validation accuracy is chosen as the best model for that setting. The best control
parameter for a formulation is again selected based on validation accuracy. For all our formulations,
we report the test scores corresponding to the best control parameter in Table 2.
Neural Machine Translation: We consider the FR-EN language pair from the NMT-Benchmark
project and perform experiments both ways. We see (refer Table.2) that sparsegen-lin surpasses
BLEU scores of softmax and sparsemax for FR-EN translation, whereas sparsehg formulations yield
comparable performance. Quantitatively, these metrics show that adding explicit controls do not come
at the cost of accuracy. In addition, it is encouraging to see (refer Fig.8 in App.A.8) that increasing λ
for sparsegen-lin leads to crisper and hence more interpretable attention heatmaps (the lesser number
of activated columns per row the better it is). We have also analyzed the average sparsity of heatmaps
over the whole test dataset and have indeed observed that larger λ leads to sparser attention.
Abstractive Summarization: We next perform our experiments on abstractive summarization
datasets like Gigaword, DUC2003 & DUC2004 and report ROUGE metrics. The results in Ta-
ble.2 show that sparsegen-lin stands out in performance with other formulations closely following
and comparable to softmax and sparsemax. It is also encouraging to see that all the models trained on
Gigaword generalizes well on other datasets DUC2003 and DUC2004. Here again the λ control leads
to more interpretable attention heatmaps as shown in Fig.9 in App.A.8 and we have also observed the
same with average sparsity of heatmaps over the test set.

6 Conclusions and Future Work
In this paper, we investigated a family of sparse probability mapping functions, unifying them under
a general framework. This framework helped us to understand connections to existing formulations
in the literature like softmax, spherical softmax and sparsemax. Our proposed probability mapping
functions enabled us to provide explicit control over sparsity to achieve higher interpretability.
These functions have closed-form solutions and sub-gradients can be computed easily. We have
also proposed convex loss functions, which helped us to achieve better accuracies in the multilabel
classification setting. Application of these formulations to compute sparse attention weights for NLP
tasks also yielded improvements in addition to providing control to produce enhanced interpretability.
As future work, we intend to apply these sparse attention formulations for efficient read and write
operations of memory networks [19]. In addition, we would like to investigate application of these
proposed sparse formulations in knowledge distillation and reinforcement learning settings.
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