NIPS Proceedingsβ

Learning convex polytopes with margin

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


We present improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about t log t halfspaces with margins in time polynomial in t (where t is the number of halfspaces forming an optimal polytope). We also identify distinct generalizations of the notion of margin from hyperplanes to polytopes and investigate how they relate geometrically; this result may be of interest beyond the learning setting.