
Premise Selection for Theorem Proving
by Deep Graph Embedding

Mingzhe Wang∗ Yihe Tang∗ Jian Wang Jia Deng
University of Michigan, Ann Arbor

Abstract

We propose a deep learning-based approach to the problem of premise selection:
selecting mathematical statements relevant for proving a given conjecture. We
represent a higher-order logic formula as a graph that is invariant to variable
renaming but still fully preserves syntactic and semantic information. We then
embed the graph into a vector via a novel embedding method that preserves the
information of edge ordering. Our approach achieves state-of-the-art results on the
HolStep dataset, improving the classification accuracy from 83% to 90.3%.

1 Introduction

Automated reasoning over mathematical proofs is a core question of artificial intelligence that dates
back to the early days of computer science [1]. It not only constitutes a key aspect of general
intelligence, but also underpins a broad set of applications ranging from circuit design to compilers,
where it is critical to verify the correctness of a computer system [2, 3, 4].

A key challenge of theorem proving is premise selection [5]: selecting relevant statements that are
useful for proving a given conjecture. Theorem proving is essentially a search problem with the
goal of finding a sequence of deductions leading from presumed facts to the given conjecture. The
space of this search is combinatorial—with today’s large mathematical knowledge bases [6, 7], the
search can quickly explode beyond the capability of modern automated theorem provers, despite
the fact that often only a small fraction of facts in the knowledge base are relevant for proving a
given conjecture. Premise selection thus plays a critical role in narrowing down the search space and
making it tractable.

Premise selection has been mainly tackled as hand-designed heuristics based on comparing and
analyzing symbols [8]. Recently, some machine learning methods have emerged as a promising
alternative for premise selection, which can naturally be cast as a classification or ranking problem.
Alama et al. [9] trained a kernel-based classifier using essentially bag-of-words features, and demon-
strated large improvement over the state of the art system. Alemi et al. [5] were the first to apply
deep learning approaches to premise selection and demonstrated competitive results without manual
feature engineering. Kaliszyk et al. [10] introduced HolStep, a large dataset of higher-order logic
proofs, and provided baselines based on logistic regression and deep networks.

In this paper we propose a new deep learning approach to premise selection. The key idea of our
approach is to represent mathematical formulas as graphs and embed them into vector space. This
is different from prior work on premise selection that directly applies deep networks to sequences
of characters or tokens [5, 10]. Our approach is motivated by the observation that a mathematical
formula can be represented as a graph that encodes the syntactic and semantic structure of the formula.
For example, the formula ∀x∃y(P (x) ∧ Q(x, y)) can be expressed as the graph shown in Fig. 1,
where edges link terms to their constituents and connect quantifiers to their variables.

∗Equal contribution.

VAR

VAR

P

Q

Figure 1: The formula ∀x∃y(P (x) ∧Q(x, y)) can be represented as a graph.

Our hypothesis is that such graph representations are better than sequential forms because a graph
makes explicit key syntactic and semantic structures such as composition, variable binding, and
co-reference. Such an explicit representation helps the learning of invariant feature representations.
For example, P (x, T (f(z) + g(z), v)) ∧Q(y) and P (y) ∧Q(x) share the same top level structure
P ∧Q, but such similarity would be less apparent and harder to detect from a sequence of tokens
because syntactically close terms can be far apart in the sequence.

Another benefit of a graph representation is that we can make it invariant to variable renaming
while preserving the semantics. For example, the graph for ∀x∃y(P (x) ∧ Q(x, y) (Fig. 1) is the
same regardless of how the variables are named in the formula, but the semantics of quantifiers and
co-reference is completely preserved—the quantifier ∀ binds a variable that is the first argument of
both P and Q, and the quantifier ∃ binds a variable that is the second argument of Q.

It is worth noting that although a sequential form encodes the same information, and a neural network
may well be able to learn to convert a sequence of tokens into a graph, such a neural conversion
is unnecessary—unlike parsing natural language sentences, constructing a graph out of a formula
is straightforward and unambiguous. Thus there is no obvious benefit to be gained through an
end-to-end approach that starts from the textual representation of formulas.

To perform premise selection, we convert a formula into a graph, embed the graph into a vector,
and then classify the relevance of the formula. To embed a graph into a vector, we assign an initial
embedding vector for each node of the graph, and then iteratively update the embedding of each
node using the embeddings of its neighbors. We then pool the embeddings of all nodes to form
the embedding of the entire graph. The parameters of each update are learned end to end through
backpropagation. In other words, we learn a deep network that embeds a graph into a vector; the
topology of the unrolled network is determined by the input graph.

We perform experiments using the HolStep dataset [10], which consists of over two million conjecture-
statement pairs that can be used to evaluate premise selection. The results show that our graph-
embedding approach achieves large improvement over sequence-based models. In particular, our
approach improves the state-of-the-art accuracy on HolStep by 7.3%.

Our main contributions of this work are twofold. First, we propose a novel approach to premise
selection that represents formulas as graphs and embeds them into vectors. To the best our knowledge,
this is the first time premise selection is approached using deep graph embedding. Second, we
improve the state-of-the-art classification accuracy on the HolStep dataset from 83% to 90.3%.

2 Related Work

Research on automated theorem proving has a long history [11]. Decades of research has resulted in a
variety of well-developed automated theorem provers such as Vampire [12] and E [13]. However, no
existing automated provers can scale to large mathematical libraries due to combinatorial explosion
of the search space. This limitation gave rise to the development of interactive theorem proving [11]
such as Coq [14] and Isabelle [15], which combines humans and machines in theorem proving and
has led to impressive achievements such as the proof of the Kepler conjecture [16] and the formal
proof of the Feit-Thompson problem [17].

Premise selection as a machine learning problem was introduced by Alama et al. [9], who constructed
a corpus of proofs to train a kernelized classifier using bag-of-word features that represent the
occurrences of terms in a vocabulary. Deep learning techniques were first applied to premise selection
in the DeepMath work by Alemi et al. [5], who applied recurrent networks and convolutional to
formulas represented as textual sequences, and showed that deep learning approaches can achieve
competitive results against baselines using hand-engineered features. Serving the needs for large

2

datasets for training deep models, Kaliszyk et al. [10] introduced the HolStep dataset that consists of
2M statements and 10K conjectures, an order of magnitude larger than the DeepMath dataset [5].

A related task to premise selection is internal guidance of ATPs [18, 19, 20, 21, 22, 23, 24], the
selection of the next clause to process inside an automated theorem prover. Internal guidance differs
from premise selection in that internal guidance depends on the logical representation, inference
algorithm, and current state inside a theorem prover, whereas premise selection is only about picking
relevant statements as the initial input to a theorem prover that is treated as a black box. Because
internal guidance is tightly integrated with proof search and is invoked repeatedly, efficiency is as
important as accuracy, whereas for premise selection efficiency is not as critical.

Loos et al. [25] were the first to apply deep networks to internal guidance of ATPs. They experimented
with both sequential representations and tree representations (recursive neural networks [26, 27]).
Note that their tree representations are simply the parse trees, which, unlike our graphs, are not
invariant to variable renaming and do not capture how quantifiers bind variables. Whalen [23] uses
GRU networks to guide the exploration of partial proof trees, with formulas represented as sequences
of tokens.

In addition to premise selection and internal guidance, other aspects of theorem proving have also
benefited from machine learning. For example, Kühlwein & Urban [28] applied kernel methods to
strategy finding, the problem of searching for good parameter configurations for an automated prover.
Similarly, Bridge et al. [29] applied SVM and Gaussian Processes to select good heuristics, which
are collections of standard settings for parameters and other decisions.

Our graph embedding method is related to a large body of prior work on embeddings and graphs.
Deepwalk [30], LINE [31] and Node2Vec [32] focus on learning node embeddings. Similar to
Word2Vec [33, 34], they optimize the embedding of a node to predict nodes in a neighborhood.
Recursive neural networks [35, 27] and Tree LSTMs [36] consider embeddings of trees, a special
type of graphs. Misra & Artzi [37] embed tree representations of typed lambda calculus expressions
into vectors, with variable nodes labeled with only their types. This leads to invariance to variable
renaming, but is not entirely lossless in terms of semantics. If a formula contains multiple variables
of the same type but with different names, it is not possible to know which lambda abstraction binds
which variable.

Neural networks on general graphs were first introduced by Gori et al [38] and Scarselli et al [39].
Many follow-up works [40, 41, 42, 43, 44, 45] proposed specific architectures to handle graph-based
input by extending recurrent neural network to graph data [38, 41, 42] or making use of graph
convolutions based on spectral graph theories [40, 43, 44, 45, 46]. Our approach is most similar to
the work of [40], where they encode molecular fragments as neural fingerprints with graph-based
convolutions for chemical applications. But to the best of our knowledge, no previous deep learning
approaches on general graphs preserve the order of edges. In contrast, we propose a novel way of
graph embedding that can preserve the information of edge ordering, and demonstrate its effectiveness
for premise selection.

3 FormulaNet: Formulas to Graphs to Embeddings

3.1 Formulas to Graphs

We consider formulas in higher-order logic [47]. A higher-order formula can be defined recursively
based on a vocabulary of constants, variables, and quantifiers. A variable or a constant can act as a
value or a function. For example, ∀f∃x(f(x, c) ∧ P (f)) is a higher-order formula where ∀ and ∃ are
quantifiers, c is a constant value, P,∧ are constant functions, x is a variable value, and f is both a
variable function and a variable value.

To construct a graph from a formula, we first parse the formula into a tree, where each internal node
represents a constant function, a variable function, or a quantifier, and each leaf node represents a
variable value or a constant value. We then add edges that connect a quantifier node to all instances of
its quantified variables, after which we merge (leaf) nodes that represent the same constant or variable.
Finally, for each occurrence of a variable, we replace its original name with VAR, or VARFUNC if it
acts as a function. Fig. 2 illustrates these steps.

3

x

f

f P

x x fc VAR

f

f

P

c x

P

c

VARFUNC

(a) (b) (c) (d)

VAR

Figure 2: From a formula to a graph: (a) the input formula; (b) parsing the formula into a tree; (c)
merging leaves and connecting quantifiers to variables; (d) renaming variables.

Formally, let S be the set of all formulas, Cv be the set of constant values, Cf the set of constant
functions, Vv the set of variable values, Vf the set of variable functions, and Q the set of quantifiers.
Let s be a higher-order logic formula with no free variables—any free variables can be bounded
by adding quantifiers ∀ to the front of the formula. The graph Gs = (Vs, Es) of formula s can be
recursively constructed as follows:

• if s = α, where α ∈ Cv ∪ Vv , then Gs ← ({α}, ∅), i.e. the graph contains a single node α.

• if s = f(s1, s2, . . . , sn), where f ∈ Cf ∪ Vf and s1, . . . , sn ∈ S, then we perform
G′s ← (

⋃n
i Vsi ∪ {f},

⋃n
i Esi ∪ {(f, ν(si))}i) followed by Gs ← MERGE_C(G′s), where

ν(si) is the “head node” of si and MERGE_C is an operation that merges the same constant
(leaf) nodes in the graph.

• if s = φxt, where φ ∈ Q, t ∈ S, x ∈ Vv ∪ Vf , then we perform G′′s ←(
Vt ∪ {f}, Et ∪ {(φ, ν(t))

⋃
v∈Vt[x]

{(φ, v)}
)

, followed by G′s ← MERGEx(G
′′
s) if x ∈

Vv ∪ Vf and Gs ← RENAMEx(G
′
s), where Vt[x] is the nodes that represent the variable x in

the graph of t, MERGEx is an operation that merges all nodes representing the variable x into
a single node, and RENAMEx is an operation that renames x to VAR (or VARFUNC if x acts as
a function).

By construction, our graph is invariant to variable renaming, yet no syntactic or semantic information
is lost. This is because for a variable node (either as a function or value), its original name in the
formula is irrelevant in the graph—the graph structure already encodes where it is syntactically and
which quantifier binds it.

3.2 Graphs to Embeddings

To embed a graph to a vector, we take an approach similar to performing convolution or message
passing on graphs [40]. The overall idea is to associate each node with an initial embedding and
iteratively update them. As shown in Fig. 3, suppose v and each node around v has an initial
embedding. We update the embedding of v by the node embeddings in its neighborhood. After
multi-step updates, the embedding of v will contain information from its local strcuture. Then we
max-pool the node embeddings across all of nodes in the graph to form an embedding for the graph.

To initialize the embedding for each node, we use the one-hot vector that represents the name of the
node. Note that in our graph all variables have the same name VAR (or VARFUNC if the variable acts
as a function), so their initial embeddings are the same. All other nodes (constants and quantifiers)
each have their names and thus their own one-hot vectors.

We then repeatedly update the embedding of each node using the embeddings of its neighbors. Given
a graph G = (V,E), at step t+ 1 we update the embedding xt+1

v of node v as follows:

xt+1
v = F t

P

(
xtv +

1

dv

[∑
(u,v)∈E

F t
I (x

t
u, x

t
v) +

∑
(v,u)∈E

F t
O(x

t
v, x

t
u)
])
, (1)

where dv is the degree of node v, F t
I and F t

O are update functions using incoming edges and outgoing
edges, and F t

P is an update function to conbine the old embeddings with the new update from neighbor

4

v

u u

u u

u u

Figure 3: An example of applying the order-preserving updates in Eqn. 2. To update node v, we
consider its neighbors and its position in all treelets (see Sec. 3.3) it belongs to.

nodes. We parametrize these update functions as neural networks; the detailed configurations will be
given in Sec. 4.2.

It is worth noting that all node embeddings are updated in parallel using the same update functions,
but the update functions can be different across steps to allow more flexibility. Repeated updates allow
each embedding to incorporate information from a bigger neighborhood and thus capture more global
structures. Interestingly, with zero updates, our model reduces to a bag-of-words representation, that
is, a max pooling of individual node embeddings.

To predict the usefulness of a statement for a conjecture, we send the concatenation of their embed-
dings to a classifier. The classification can also be done in the unconditional setting where only the
statement is given; in this case we directly send the embedding of the statement to a classifier. The
parameters of the update functions and the classifiers are learned end to end through backpropagation.

3.3 Order-Preserving Embeddings

For functions in a formula, the order of its arguments matters. That is, f(x, y) cannot generally be
presumed to mean the same as f(y, x). But our current embedding update as defined in Eqn. 1 is
invariant to the ordering of arguments. Given that it is possible that the ordering of arguments can
be a useful feature for premise selection, we now consider a variant of our basic approach to make
our graph embeddings sensitive to the ordering of arguments. In this variant, we update each node
considering the ordering of its incoming edges and outgoing edges.

Before we define our new update equation, we need to introduce the notion of a treelet. Given a node
v in graph G = (V,E), let (v, w) ∈ E be an outgoing edge of v, and let rv(w) ∈ {1, 2, . . .} be the
rank of edge (v, w) among all outgoing edges of v. We define a treelet of graph G = (V,E) as a
tuple of nodes (u, v, w) ∈ V × V × V such that (1) both (v, u) and (v, w) are edges in the graph
and (2) (v, u) is ranked before (v, w) among all outgoing edges of v. In other words, a treelet is a
subgraph that consists of a head node v, a left child u and a right child w. We use TG to denote all
treelets of graph G, that is, TG = {(u, v, w) : (v, u) ∈ E, (v, w) ∈ E, rv(u) < rv(w)}.
Now, when we update a node embedding, we consider not only its direct neighbors, but also its roles
in all the treelets it belongs to:

xt+1
v = F t

P

(
xtv +

1

dv

[∑
(u,v)∈E

F t
I (x

t
u, x

t
v) +

∑
(v,u)∈E

F t
O(x

t
v, x

t
u)
]

+
1

ev

[∑
(v,u,w)∈TG

F t
L(x

t
v, x

t
u, x

t
w) +

∑
(u,v,w)∈TG

F t
H(xtu, x

t
v, x

t
w) +

∑
(u,w,v)∈TG

F t
R(x

t
u, x

t
w, x

t
v)
])
(2)

where ev = |{(u, v, w) : (u, v, w) ∈ TG ∨ (v, u, w) ∈ TG ∨ (u,w, v) ∈ TG}| is the number of total
treelets containing v. In this new update equation, FL is an update function that considers a treelet
where node v is the left child. Similarly, FH considers a treelet where node v is the head and FR

considers a treelet where node v is the right child. As in Sec. 3.2, the same update functions are
applied to all nodes at each step, but across steps the update functions can be different. Fig. 3 shows
the update equation of a concrete example.

Our design of Eqn. 2 now allows a node to be embedded differently dependent on the ordering of its
own arguments and dependent on which argument slot it takes in a parent function. For example,
the function node f can now be embedded differently for f(a, b) and f(b, a) because of the output
of FH can be different. As another example, in the formula g(f(a), f(a)), there are two function

5

