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Abstract

Dynamic time warping (DTW) is a fundamental technique in time series analysis
for comparing one curve to another using a flexible time-warping function. How-
ever, it was designed to compare a single pair of curves. In many applications,
such as in metabolomics and image series analysis, alignment is simultaneously
needed for multiple pairs. Because the underlying warping functions are often
related, independent application of DTW to each pair is a sub-optimal solution.
Yet, it is largely unknown how to efficiently conduct a joint alignment with all
warping functions simultaneously considered, since any given warping function
is constrained by the others and dynamic programming cannot be applied. In
this paper, we show that the joint alignment problem can be transformed into a
network flow problem and thus can be exactly and efficiently solved by the max
flow algorithm, with a guarantee of global optimality. We name the proposed
approach graphical time warping (GTW), emphasizing the graphical nature of
the solution and that the dependency structure of the warping functions can be
represented by a graph. Modifications of DTW, such as windowing and weighting,
are readily derivable within GTW. We also discuss optimal tuning of parameters
and hyperparameters in GTW. We illustrate the power of GTW using both synthetic
data and a real case study of an astrocyte calcium movie.

1 Introduction

Time series, such as neural recordings, economic observations and biological imaging movies, are
ubiquitous, containing rich information about the temporal patterns of physical quantities under
certain conditions. Comparison of time series lies at the heart of many scientific questions. Due to
the time distortions, direct comparison of time series using e.g. Euclidean distance is problematic.
Dynamic time warping (DTW) is a powerful and popular technique for time series comparison
using flexible warping functions. DTW has been successful for various tasks, including querying,
classification, and clustering [1, 2, 3]. Although DTW is a mature approach, significant improvements
have been proposed over the years, such as derivative DTW [4], weighted DTW [5], curve pairs with
multiple dimensions [6], and extensions for large scale data mining [7].

However, DTW and all its variants consider the alignment of a single pair of time series, while in
many applications we encounter the task of aligning multiple pairs simultaneously. One might apply
DTW or its variants to each pair separately. However, very often, this is suboptimal because it ignores
the dependency structure between the multiple warping functions. For example, when analyzing time
lapse imaging data [8], we can consider the data as a collection of time series indexed by pixel. One
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Figure 1: (a) Each node is a warping path between two curves xn and yn. Neighboring paths are
assumed to be similar (A and B) while non-neighboring ones may be quite different (A and C). (b)
DTW can be represented as a shortest path problem in a directed graph. Each edge originating from
node (k1, k2) has a weight given by the dissimilarity (e.g. Euclidean distance) between xn(k1) and
yn(k2). The path distance between the purple and green paths is defined as the area of the shaded
parts. (c) Primal and dual graphs. The purple and gold edges are two infinite capacity reverse edges
for the dual and primal graphs, respectively. Only two such edges are drawn for clarity. The dashed
line shows the auxiliary edges used for transforming the primal graph to the dual graph, which are
removed afterwards. (d) Flow chart for GTW. The corresponding figure for each step is annotated.

potential task is to compute the warping function associated with every pixel with respect to a given
reference time series, with the ultimate goal of identifying signal propagation patterns among pixels.
Although different pixels may have different warping functions, we expect that the functions are
more similar between adjacent pixels than between distant pixels. That is, we expect a certain degree
of smoothness among spatially adjacent warping functions. Another example is profile alignment
for liquid chromatography-mass spectrometry (LC-MS) data, which is used to measure expression
levels of small biomolecules such as proteins and metabolites. Each profile can be considered as a
time series indexed by the retention time [9]. Typically, all profiles in the data set must be aligned to
a reference profile. Because the LC-MS data measures similar things against a common reference
profile, we expect similar warping functions for all profiles.

To the best of our knowledge, there is no existing approach that fundamentally generalizes DTW
to jointly model multiple warping functions and align multiple curves, while retaining these advan-
tageous properties of DTW: (1) computational efficiency and (2) a guarantee of global optimality.
As we will discuss below, most existing efforts reuse DTW multiple times in a heuristic way. In-
terestingly, the necessity for and the challenge of a joint and integrated modeling approach come
precisely from the two factors that contribute to the wide use of DTW. On one hand, the power of
DTW is due to its flexibility in allowing a broad range of warping functions. As is well known in
machine learning, an unavoidable consequence of flexibility is the problem of overfitting [10], and
hence the estimated warping function is often unreliable. This problem becomes severe when the
observed time series are very noisy and this is often the case, rather than the exception, for multiple
curve alignment. On the other hand, the solution to DTW is extremely efficient and global optimality
(with respect to the DTW objective function) is guaranteed, through the application of dynamic
programming [11]. Unfortunately, when we consider joint modeling of multiple warping functions,
dynamic programming is no longer applicable due to interactions between the different warping
functions.

The computational burden of such a joint modeling seems prohibitive, and the feasibility of obtaining
the global optimum is far from obvious, because each warping function is coupled to all the rest,
either directly or indirectly. Thus, we were fortuitous to find that the joint modeling can be solved
very efficiently, with global optimality ensured.

In this paper, we develop Graphical Time Warping (GTW) to jointly model multiple time warping
functions in a unified framework. Given a set of warping function {Pn, n = 1, . . . , N} to be
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optimized, a generic form of GTW can be expressed as follows:

min
{Pn,n=1,...,N}

N∑
n=1

DTW_cost(Pn) + κ
∑

E(m,n)∈Gstruct

dissimilarity_cost(Pm, Pn), (1)

where Pn is subject to the same constraints as in conventional DTW such as boundary conditions,
continuity, and monotonicity [12]. Gstruct is a graph encoding the dependency structure among
the warping functions. Each node in the graph represents one warping function, indexed by n,
and E(m,n) ∈ Gstruct denotes that there is an edge between nodes m and n in Gstruct, whose
corresponding warping functions are expected to be similar, as encoded in the second term of the
cost (1). DTW_cost is the conventional DTW path finding cost and dissimilarity_cost ensures
the neighboring warping functions are similar. The graph Gstruct can be defined by users or induced
from other sources, which provides great flexibility for encoding various types of problems. For
example, to analyze time series imaging data, the graph can be induced by the pixel grid so that
edges exist only between spatially neighboring pixels. Alternatively, when aligning multiple LC-MS
profiles, the graph is fully connected, such that each profile has an edge with all other profiles.

Since a warping function is a path in a two-dimensional grid from a given source to a given sink
(as in Fig.1b), we propose to use the area bounded by two paths as the dissimilarity cost between
them. Later, we will show how the optimization problem in Equation (1) equipped with this specific
dissimilarity cost can be transformed into a network flow problem and solved by the max flow
algorithm [13, 14].

As previously discussed, most DTW improvements have focused on the alignment of a single pair
of curves. There are some heuristic efforts that deal with alignment of multiple curves. Chudova
jointly performed clustering and time warping using a mixture model [15]; this assumes curves from
the same cluster are generated by a single model. This is a suboptimal, restrictive “surrogate” for
capturing the relationships between curves, and does not capture relationships as (user-)specified
by a graph. Tsai et al. applied an MCMC strategy to align multiple LC-MS profiles with a single
prior distribution imposed on all warping functions [9], but the approach is time-consuming and
no finite-time convergence to the global optimum is guaranteed. Similarly, algorithms for aligning
multiple DNA sequences are based on first clustering the sequences and then progressively aligning
them [16, 17]. Most critically, all existing approaches assume special dependency structures, e.g. all
nodes (curves) are equally dependent, and do not promise a globally optimal solution, while GTW
works with any given dependency structure and finds the globally optimal solution efficiently.

Interestingly, the max flow algorithm has long been suggested as an alternative to DTW [13] by
researchers in the network flow community. As an example, Uchida extended DTW to the non-
Markovian case and solved it by the max flow algorithm [18]. Max flow formulations have also been
developed to solve image segmentation [14], stereo matching [19] and shape matching problems
[20]. But researchers in the time series analysis community have paid little attention to the max
flow approach, perhaps because dynamic programming is much more efficient than the max flow
algorithm and is sufficient for conventional DTW problems.

2 Problem Formulation

The task is to jointly align N pairs of curves (xn, yn), 1 ≤ n ≤ N . For the sake of clarity, but
without loss of generality, we assume all curves have the same length K and each curve is indexed by
an integer from 1 to N . To rigorously formulate the problem, we have the following definitions.

Definition 1 – valid warping function. A valid warping function for the nth pair of curves is
a set of integer pairs Pn = {(kn,x, kn,y)} such that the following conditions are satisfied: (a)
boundary conditions: (1, 1) ∈ Pn and (K,K) ∈ Pn; (b) continuity and monotonicity conditions: if
(kn,x, kn,y) ∈ Pn, then (kn,x− 1, kn,y) ∈ Pn or (kn,x, kn,y− 1) ∈ Pn or (kn,x− 1, kn,y− 1) ∈ Pn.

Definition 2 – alignment cost. For any given valid warping function Pn and its corresponding pair
of curves (xn, yn), the associated alignment cost is defined as follows:

cost(Pn) =
∑

(k1,k2)∈Pn

g(xn[k1]− yn[k2])), (2)

where g(·) is any nonnegative function.
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Figure 2: (a) GTW graph for two neighboring pairs. Only two (bidirectional) edges (green) are drawn
for clarity. The orange background represents the (single pair) primal graphs. The blue foreground
represents the dual graphs. (b) A neighborhood structure used for simulation. In the center is a 10
by 10 grid for 100 pairs, with e.g. a close spatial neighborhood defined around each grid point. The
warping paths for the three blue squares are shown. The short red and green lines indicate when time
shifts occur. They are at different positions along the three paths. The warping paths for spatially
close pairs should be similar.

Definition 3 – neighboring warping functions. Suppose the dependency structure for a set of N
valid warping functions is given by the graph Gstruct = {Vs, Es}, where Vs is the set of nodes,
with each node corresponding to a warping function, and Es is the set of undirected edges between
nodes. If there is an edge between the mth and nth nodes, we call Pm and Pn neighbors, denoted by
(m,n) ∈ Neib.
Definition 4 – distance between two valid warping functions. We define the distance between two
valid warping functions dist(Pm, Pn) as the area of the region bounded by the two paths as shown in
Fig.1b.

When we jointly align multiple pairs of curves, our goal is to minimize both the overall alignment
cost and the distance between neighboring warping functions. Mathematically, denoting VP the set
of valid warping function and κ1 the hyperparameter, we want to solve the following optimization
problem:

min
P
f(P ) = min

P={Pn∈VP |1≤n≤N}

N∑
n=1

cost(Pn) + κ1
∑

(m,n)∈Neib

dist(Pm, Pn) (3)

3 Methods

In this section, we first construct a graph based on Equation (3); then we prove that Equation (3) can
be solved via the well-known max flow problem in the graph; finally we provide a practical algorithm.

3.1 Graph construction

Definition 5 – directed planar graph for a single pair of curves. For each pair of curves, consistent
with the cost function (2), there is an induced directed planar graph [21], Gn := {Vn, En}, 1 ≤ n ≤
N , where Vn and En are the nodes and directed edges, respectively. An example is shown in Fig.1b.

Definition 6 – dual graph. Define G′n := {V ′n, E′n} as the dual graph of the directed planar graph
Gn, where nodes V ′n are all faces of Gn, and for each e ∈ En, we have a new edge e′ ∈ E′n
connecting the faces from the right side of e to the left side. This edge is directed (with positive
direction by convention). The edge weights are the same as for the primal graph Gn. An example is
shown in Fig.1c.

In contrast to conventional dual graph theory, one critical innovation here is that besides the positive
edge we add in one more edge with reverse direction in the dual graph corresponding to each edge in
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