
Learning with Incremental Iterative Regularization

Lorenzo Rosasco
DIBRIS, Univ. Genova, ITALY

LCSL, IIT & MIT, USA
lrosasco@mit.edu

Silvia Villa
LCSL, IIT & MIT, USA

Silvia.Villa@iit.it

Abstract

Within a statistical learning setting, we propose and study an iterative regulariza-
tion algorithm for least squares defined by an incremental gradient method. In
particular, we show that, if all other parameters are fixed a priori, the number of
passes over the data (epochs) acts as a regularization parameter, and prove strong
universal consistency, i.e. almost sure convergence of the risk, as well as sharp
finite sample bounds for the iterates. Our results are a step towards understanding
the effect of multiple epochs in stochastic gradient techniques in machine learning
and rely on integrating statistical and optimization results.

1 Introduction

Machine learning applications often require efficient statistical procedures to process potentially
massive amount of high dimensional data. Motivated by such applications, the broad objective of
our study is designing learning procedures with optimal statistical properties, and, at the same time,
computational complexities proportional to the generalization properties allowed by the data, rather
than their raw amount [6]. We focus on iterative regularization as a viable approach towards this
goal. The key observation behind these techniques is that iterative optimization schemes applied to
scattered, noisy data exhibit a self-regularizing property, in the sense that early termination (early-
stop) of the iterative process has a regularizing effect [21, 24]. Indeed, iterative regularization algo-
rithms are classical in inverse problems [15], and have been recently considered in machine learning
[36, 34, 3, 5, 9, 26], where they have been proved to achieve optimal learning bounds, matching
those of variational regularization schemes such as Tikhonov [8, 31].

In this paper, we consider an iterative regularization algorithm for the square loss, based on a recur-
sive procedure processing one training set point at each iteration. Methods of the latter form, often
broadly referred to as online learning algorithms, have become standard in the processing of large
data-sets, because of their low iteration cost and good practical performance. Theoretical studies
for this class of algorithms have been developed within different frameworks. In composite and
stochastic optimization [19, 20, 29], in online learning, a.k.a. sequential prediction [11], and finally,
in statistical learning [10]. The latter is the setting of interest in this paper, where we aim at devel-
oping an analysis keeping into account simultaneously both statistical and computational aspects.
To place our contribution in context, it is useful to emphasize the role of regularization and different
ways in which it can be incorporated in online learning algorithms. The key idea of regularization
is that controlling the complexity of a solution can help avoiding overfitting and ensure stability and
generalization [33]. Classically, regularization is achieved penalizing the objective function with
some suitable functional, or minimizing the risk on a restricted space of possible solutions [33].
Model selection is then performed to determine the amount of regularization suitable for the data
at hand. More recently, there has been an interest in alternative, possibly more efficient, ways to
incorporate regularization. We mention in particular [1, 35, 32] where there is no explicit regular-
ization by penalization, and the step-size of an iterative procedure is shown to act as a regularization
parameter. Here, for each fixed step-size, each data point is processed once, but multiple passes are
typically needed to perform model selection (that is, to pick the best step-size). We also mention

1



[22] where an interesting adaptive approach is proposed, which seemingly avoid model selection
under certain assumptions.

In this paper, we consider a different regularization strategy, widely used in practice. Namely, we
consider no explicit penalization, fix the step size a priori, and analyze the effect of the number of
passes over the data, which becomes the only free parameter to avoid overfitting, i.e. regularize.
The associated regularization strategy, that we dub incremental iterative regularization, is hence
based on early stopping. The latter is a well known ”trick”, for example in training large neural
networks [18], and is known to perform very well in practice [16]. Interestingly, early stopping
with the square loss has been shown to be related to boosting [7], see also [2, 17, 36]. Our goal
here is to provide a theoretical understanding of the generalization property of the above heuristic
for incremental/online techniques. Towards this end, we analyze the behavior of both the excess
risk and the iterates themselves. For the latter we obtain sharp finite sample bounds matching those
for Tikhonov regularization in the same setting. Universal consistency and finite sample bounds for
the excess risk can then be easily derived, albeit possibly suboptimal. Our results are developed
in a capacity independent setting [12, 30], that is under no conditions on the covering or entropy
numbers [30]. In this sense our analysis is worst case and dimension free. To the best of our
knowledge the analysis in the paper is the first theoretical study of regularization by early stopping
in incremental/online algorithms, and thus a first step towards understanding the effect of multiple
passes of stochastic gradient for risk minimization.

The rest of the paper is organized as follows. In Section 2 we describe the setting and the main
assumptions, and in Section 3 we state the main results, discuss them and provide the main elements
of the proof, which is deferred to the supplementary material. In Section 4 we present some experi-
mental results on real and synthetic datasets.
Notation We denote by R+ = [0,+1[ , R++ = ]0,+1[ , and N⇤

= N \{0}. Given a normed
space B and linear operators (Ai)1im, Ai : B ! B for every i, their composition Am � · · · � A1

will be denoted as
Qm

i=1 Ai. By convention, if j > m, we set
Qm

i=j Ai = I , where I is the identity
of B. The operator norm will be denoted by k · k and the Hilbert-Schmidt norm by k · kHS . Also, if
j > m, we set

Pm
i=j Ai = 0.

2 Setting and Assumptions

We first describe the setting we consider, and then introduce and discuss the main assumptions that
will hold throughout the paper. We build on ideas proposed in [13, 27] and further developed in a
series of follow up works [8, 3, 28, 9]. Unlike these papers where a reproducing kernel Hilbert space
(RKHS) setting is considered, here we consider a formulation within an abstract Hilbert space. As
discussed in the Appendix A, results in a RKHS can be recovered as a special case. The formula-
tion we consider is close to the setting of functional regression [25] and reduces to standard linear
regression if H is finite dimensional, see Appendix A.

Let H be a separable Hilbert space with inner product and norm denoted by h·, ·iH and k·kH. Let
(X,Y ) be a pair of random variables on a probability space (⌦,S,P), with values in H and R,
respectively. Denote by ⇢ the distribution of (X,Y ), by ⇢X the marginal measure on H, and by
⇢(·|x) the conditional measure on R given x 2 H. Considering the square loss function, the problem
under study is the minimizazion of the risk,

inf

w2H
E(w), E(w) =

Z

H⇥R
(hw, xiH � y)2d⇢(x, y) , (1)

provided the distribution ⇢ is fixed but known only through a training set z =

{(x1, y1), . . . , (xn, yn)}, that is a realization of n 2 N⇤ independent identical copies of (X,Y ).
In the following, we measure the quality of an approximate solution ŵ 2 H (an estimator) consid-
ering the excess risk

E(ŵ)� inf

H
E . (2)

If the set of solutions of Problem (1) is non empty, that is O = argminH E 6= ?, we also consider
�

�ŵ � w†�
�

H , where w†
= argmin

w2O
kwkH. (3)
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More precisely we are interested in deriving almost sure convergence results and finite sample
bounds on the above error measures. This requires making some assumptions that we discuss next.
We make throughout the following basic assumption.
Assumption 1. There exist M 2 ]0,+1[ and  2 ]0,+1[ such that |y|  M ⇢-almost surely, and
kxk2H   ⇢X -almost surely.

The above assumption is fairly standard. The boundness assumption on the output is satisfied in
classification, see Appendix A, and can be easily relaxed, see e.g. [8]. The boundness assumption
on the input can also be relaxed, but the resulting analysis is more involved. We omit these develop-
ments for the sake of clarity. It is well known that (see e.g. [14]), under Assumption 1, the risk is a
convex and continuous functional on L2

(H, ⇢X), the space of square-integrable functions with norm
kfk2⇢ =

R

H⇥R |f(x)|2d⇢X(x). The minimizer of the risk on L2
(H, ⇢X) is the regression function

f⇢(x) =

R

yd⇢(y|x) for ⇢X -almost every x 2 H. By considering Problem (1) we are restricting
the search for a solution to linear functions. Note that, since H is in general infinite dimensional,
the minimum in (1) might not be achieved. Indeed, bounds on the error measures in (2) and (3)
depend on if, and how well, the regression function can be linearly approximated. The following
assumption quantifies in a precise way such a requirement.
Assumption 2. Consider the space L⇢ = {f : H ! R | 9w 2 H with f(x) = hw, xi ⇢X - a.s.},
and let L⇢ be its closure in L2

(H, ⇢X). Moreover, consider the operator

L : L2
(H, ⇢X) ! L2

(H, ⇢X), Lf(x) =

Z

H
hx, x0i f(x0

)d⇢(x0
), 8f 2 L2

(H, ⇢X). (4)

Define g⇢ = argming2L⇢
kf⇢ � gk⇢. Let r 2 [0,+1[, and assume that

(9g 2 L2
(H, ⇢X)) such that g⇢ = Lrg. (5)

The above assumption is standard in the context of RKHS [8]. Since its statement is somewhat
technical, and we provide a formulation in a Hilbert space with respect to the usual RKHS setting,
we further comment on its interpretation. We begin noting that L⇢ is the space of linear functions
indexed by H and is a proper subspace of L2

(H, ⇢X) – if Assumption 1 holds. Moreover, under
the same assumption, it is easy to see that the operator L is linear, self-adjoint, positive definite and
trace class, hence compact, so that its fractional power in (4) is well defined. Most importantly, the
following equality, which is analogous to Mercer’s theorem [30], can be shown fairly easily:

L⇢ = L1/2
�

L2
(H, ⇢X)

�

. (6)

This last observation allows to provide an interpretation of Condition (5). Indeed, given (6), for
r = 1/2, Condition (5) states that g⇢ belongs to L⇢, rather than its closure. In this case, Problem 1
has at least one solution, and the set O in (3) is not empty. Vice versa, if O 6= ? then g⇢ 2 L⇢,
and w† is well-defined. If r > 1/2 the condition is stronger than for r = 1/2, for the subspaces of
Lr

(L2
(H, ⇢X)) are nested subspaces of L2

(H, ⇢X) for increasing r1.

2.1 Iterative Incremental Regularized Learning

The learning algorithm we consider is defined by the following iteration.

Let ŵ0 2 H and � 2 R++. Consider the sequence (ŵt)t2N generated through the following
procedure: given t 2 N, define

ŵt+1 = ûn
t , (7)

where ûn
t is obtained at the end of one cycle, namely as the last step of the recursion

û0
t = ŵt; ûi

t = ûi�1
t � �

n
(hûi�1

t , xiiH � yi)xi, i = 1, . . . , n. (8)

1If r < 1/2 then the regression function does not have a best linear approximation since g⇢ /2 L⇢, and in
particular, for r = 0 we are making no assumption. Intuitively, for 0 < r < 1/2, the condition quantifies how
far g⇢ is from L⇢, that is to be well approximated by a linear function.
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Each cycle, called an epoch, corresponds to one pass over data. The above iteration can be seen as
the incremental gradient method [4, 19] for the minimization of the empirical risk corresponding to
z, that is the functional,

ˆE(w) = 1

n

n
X

i=1

(hw, xiiH � yi)
2. (9)

(see also Section B.2). Indeed, there is a vast literature on how the iterations (7), (8) can be used to
minimize the empirical risk [4, 19]. Unlike these studies in this paper we are interested in how the
iterations (7), (8) can be used to approximately minimize the risk E . The key idea is that while ŵt is
close to a minimizer of the empirical risk when t is sufficiently large, a good approximate solution
of Problem (1) can be found by terminating the iterations earlier (early stopping). The analysis in
the next few sections grounds theoretically this latter intuition.
Remark 1 (Representer theorem). Let H be a RKHS of functions from X to Y defined by a kernel
K : X ⇥ X ! R. Let ŵ0 = 0, then the iteration after t epochs of the algorithm in (7)-(8) can
be written as ŵt(·) =

Pn
k=1(↵t)kKxk , for suitable coefficients ↵t = ((↵t)1, . . . , (↵t)n) 2 Rn,

updated as follows:

↵t+1 = cnt

c0t = ↵t, (cit)k =

(

(ci�1
t )k � �

n

⇣

Pn
j=1 K(xi, xj)(c

i�1
t )j � yi

⌘

, k = i

(ci�1
t )k, k 6= i

3 Early stopping for incremental iterative regularization

In this section, we present and discuss the main results of the paper, together with a sketch of the
proof. The complete proofs can be found in Appendix B. We first present convergence results and
then finite sample bounds for the quantities in (2) and (3).
Theorem 1. In the setting of Section 2, let Assumption 1 hold. Let � 2

⇤

0,�1
⇤

. Then the following
hold:

(i) If we choose a stopping rule t⇤ : N⇤ ! N⇤ such that

lim

n!+1
t⇤(n) = +1 and lim

n!+1

t⇤(n)3 log n

n
= 0 (10)

then
lim

n!+1
E(ŵt⇤(n))� inf

w2H
E(w) = 0 P-almost surely. (11)

(ii) Suppose additionally that the set O of minimizers of (1) is nonempty and let w† be defined
as in (3). If we choose a stopping rule t⇤ : N⇤ ! N⇤ satisfying the conditions in (10) then

kŵt⇤(n) � w†kH ! 0 P-almost surely. (12)

The above result shows that for an a priori fixed step-sized, consistency is achieved computing a
suitable number t⇤(n) of iterations of algorithm (7)-(8) given n points. The number of required
iterations tends to infinity as the number of available training points increases. Condition (10) can
be interpreted as an early stopping rule, since it requires the number of epochs not to grow too fast.
In particular, this excludes the choice t⇤(n) = 1 for all n 2 N⇤, namely considering only one pass
over the data. In the following remark we show that, if we let � = �(n) to depend on the length of
one epoch, convergence is recovered also for one pass.
Remark 2 (Recovering Stochastic Gradient descent). Algorithm in (7)-(8) for t = 1 is a stochastic
gradient descent (one pass over a sequence of i.i.d. data) with stepsize �/n. Choosing �(n) =

�1n↵, with ↵ < 1/5 in Algorithm (7)-(8), we can derive almost sure convergence of E(ŵ1)�infH E
as n ! +1 relying on a similar proof to that of Theorem 1.

To derive finite sample bounds further assumptions are needed. Indeed, we will see that the behavior
of the bias of the estimator depends on the smoothness Assumption 2. We are in position to state
our main result, giving a finite sample bound.
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Theorem 2 (Finite sample bounds in H). In the setting of Section 2, let � 2
⇤

0,�1
⇤

for every t 2 N.
Suppose that Assumption 2 is satisfied for some r 2 ]1/2,+1[. Then the set O of minimizers of (1)
is nonempty, and w† in (3) is well defined. Moreover, the following hold:

(i) There exists c 2 ]0,+1[ such that, for every t 2 N⇤, with probability greater than 1� �,

kŵt � w†kH 
32 log

16
�p

n

⇣

M�1/2
+ 2M2�1

+ 3kgk⇢r� 3
2

⌘

t+

✓

r � 1
2

�

◆r� 1
2

kgk⇢t
1
2�r. (13)

(ii) For the stopping rule t⇤ : N⇤ ! N⇤
: t⇤(n) =

⌃

n
1

2r+1
⌥

, with probability greater than 1� �,

kŵt⇤(n) � w†kH 

2

4

32 log

16

�

�

M�1/2
+ 2M2�1

+ 3kgk⇢r� 3
2
�

+

✓

r � 1
2

�

◆r� 1
2

kgk⇢

3

5n� r� 1
2

2r+1 .

(14)

The dependence on  suggests that a big , which corresponds to a small �, helps in decreasing the
sample error, but increases the approximation error. Next we present the result for the excess risk.
We consider only the attainable case, that is the case r > 1/2 in Assumption 2. The case r  1/2
is deferred to Appendix A, since both the proof and the statement are conceptually similar to the
attainable case.
Theorem 3 (Finite sample bounds for the risk – attainable case). In the setting of Section 2, let
Assumptions 1 holds, and let � 2

⇤

0,�1
⇤

. Let Assumption 2 be satisfied for some r 2 ]1/2,+1].
Then the following hold:

(i) For every t 2 N⇤, with probability greater than 1� �,

E(ŵt)� inf

H
E 

2

�

32 log(16/�)
�2

n

h

M + 2M2�1/2
+ 3rkgk⇢

i2
t2 + 2

✓

r

�t

◆2r

kgk2⇢ (15)

(ii) For the stopping rule t⇤ : N⇤ ! N⇤
: t⇤(n) =

⌃

n
1

2(1+r)
⌥

, with probability greater than 1� �,

E(ŵt⇤(n))� inf

H
E 

"

8

✓

32 log

16

�

◆2
⇣

M + 2M2�1/2
+ 3rkgk⇢

⌘2
+ 2

✓

r

�

◆2r

kgk2⇢

#

n�r/(r+1)

(16)

Equations (13) and (15) arise from a form of bias-variance (sample-approximation) decomposition
of the error. Choosing the number of epochs that optimize the bounds in (13) and (15) we derive
a priori stopping rules and corresponding bounds (14) and (16). Again, these results confirm that
the number of epochs acts as a regularization parameter and the best choices following from equa-
tions (13) and (15) suggest multiple passes over the data to be beneficial. In both cases, the stopping
rule depends on the smoothness parameter r which is typically unknown, and hold-out cross vali-
dation is often used in practice. Following [9], it is possible to show that this procedure allows to
adaptively achieve the same convergence rate as in (16).

3.1 Discussion

In Theorem 2, the obtained bound can be compared to known lower bounds, as well as to pre-
vious results for least squares algorithms obtained under Assumption 2. Minimax lower bounds
and individual lower bounds [8, 31], suggest that, for r > 1/2, O(n(r�1/2)/(2r+1)) is the optimal
capacity-independent bound for the H norm2. In this sense, Theorem 2 provides sharp bounds on
the iterates. Bounds can be improved only under stronger assumptions, e.g. on the covering num-
bers or on the eigenvalues of L [30]. This question is left for future work. The lower bounds for
the excess risk [8, 31] are of the form O(n�2r/(2r+1)

) and in this case the results in Theorems 3
and 7 are not sharp. Our results can be contrasted with online learning algorithms that use step-size

2In a recent manuscript, it has been proved that this is indeed the minimax lower bound (G. Blanchard,
personal communication)
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as regularization parameter. Optimal capacity independent bounds are obtained in [35], see also
[32] and indeed such results can be further improved considering capacity assumptions, see [1] and
references therein. Interestingly, our results can also be contrasted with non incremental iterative
regularization approaches [36, 34, 3, 5, 9, 26]. Our results show that incremental iterative regular-
ization, with distribution independent step-size, behaves as a batch gradient descent, at least in terms
of iterates convergence. Proving advantages of incremental regularization over the batch one is an
interesting future research direction. Finally, we note that optimal capacity independent and depen-
dent bounds are known for several least squares algorithms, including Tikhonov regularization, see
e.g. [31], and spectral filtering methods [3, 9]. These algorithms are essentially equivalent from a
statistical perspective but different from a computational perspective.

3.2 Elements of the proof

The proofs of the main results are based on a suitable decomposition of the error to be estimated as
the sum of two quantities that can be interpreted as a sample and an approximation error, respec-
tively. Bounds on these two terms are then provided. The main technical contribution of the paper is
the sample error bound. The difficulty in proving this result is due to multiple passes over the data,
which induce statistical dependencies in the iterates.

Error decomposition. We consider an auxiliary iteration (wt)t2N which is the expectation of the
iterations (7) and (8), starting from w0 2 H with step-size � 2 R++. More explicitly, the considered
iteration generates wt+1 according to

wt+1 = un
t , (17)

where un
t is given by

u0
t = wt; ui

t = ui�1
t � �

n

Z

H⇥R

�

hui�1
t , xiH � y

�

x d⇢(x, y) . (18)

If we let S : H ! L2
(H, ⇢X) be the linear map w 7! hw, ·iH, which is bounded by

p
 under

Assumption 1, then it is well-known that [13]

(8t 2 N) E(ŵt)� inf

H
E = kSŵt � g⇢k2⇢  2 kSŵt � Swtk2⇢ + 2 kSwt � g⇢k2⇢
 2kŵt � wtk2H + 2(E(wt)� inf

H
E). (19)

In this paper, we refer to the gap between the empirical and the expected iterates kŵt � wtkH as the
sample error, and to A(t, �, n) = E(wt) � infH E as the approximation error. Similarly, if w† (as
defined in (3)) exists, using the triangle inequality, we obtain

kŵt � w†kH  kŵt � wtkH + kwt � w†kH. (20)

Proof main steps. In the setting of Section 2, we summarize the key steps to derive a general
bound for the sample error (the proof of the behavior of the approximation error is more standard).
The bound on the sample error is derived through many technical lemmas and uses concentration
inequalities applied to martingales (the crucial point is the inequality in STEP 5 below). Its complete
derivation is reported in Appendix B.2. We introduce the additional linear operators: T : H !
H : T = S⇤S, and, for every x 2 X , Sx : H ! R : Sxw = hw, xi, and Tx : H ! H : Tx = SxS

⇤
x.

Moreover, set ˆT =

Pn
i=1 Txi/n. We are now ready to state the main steps of the proof.

Sample error bound (STEP 1 to 5)
STEP 1 (see Proposition 1): Find equivalent formulations for the sequences ŵt and wt:

ŵt+1 = (I � � ˆT )ŵt + �

✓

1

n

n
X

j=1

S⇤
xj
yj

◆

+ �2
⇣

ˆAŵt � ˆb
⌘

wt+1 = (I � �T )wt + �S⇤g⇢ + �2
(Awt � b),

6



where

ˆA =

1

n2

n
X

k=2

"

n
Y

i=k+1

⇣

I � �

n
Txi

⌘

#

Txk

k�1
X

j=1

Txj ,
ˆb =

1

n2

n
X

k=2

"

n
Y

i=k+1

⇣

I � �

n
Txi

⌘

#

Txk

k�1
X

j=1

S⇤
xj
yj .

A =

1

n2

n
X

k=2

"

n
Y

i=k+1

⇣

I � �

n
T
⌘

#

T

k�1
X

j=1

T, b =
1

n2

n
X

k=2

"

n
Y

i=k+1

⇣

I � �

n
T
⌘

#

T

k�1
X

j=1

S⇤g⇢.

STEP 2 (see Lemma 5): Use the formulation obtained in STEP 1 to derive the following recursive
inequality,

ŵt � wt =

⇣

I � � ˆT + �2
ˆA
⌘t

(ŵ0 � w0) + �

t�1
X

k=0

⇣

I � � ˆT + � ˆA
⌘t�k+1

⇣k

with ⇣k = (T � ˆT )wk + �( ˆA�A)wk +

�

1
n

Pn
i=1

ˆS⇤
xi
yi � S⇤g⇢

�

+ �(b� ˆb).

STEP 3 (see Lemmas 6 and 7): Initialize ŵ0 = w0 = 0, prove that kI�� ˆT +� ˆAk  1, and derive
from STEP 2 that,

kŵt � wtkH  �
�

kT � ˆTk+ �k ˆA�Ak
�

t�1
X

k=0

kwkkH + �t
⇣

�

�

1

n

n
X

i=1

ˆS⇤
xi
yi � S⇤g⇢

�

�

+ �kb� ˆbk
⌘

.

STEP 4 (see Lemma 8): Let Assumption 2 hold for some r 2 R+ and g 2 L2
(H, ⇢X). Prove that

(8t 2 H) kwtkH 
⇢

max{r�1/2, (�t)1/2�r}kgk⇢ if r 2 [0, 1/2[,
r�1/2kgk⇢ if r 2 [1/2,+1[

STEP 5 (see Lemma 9 and Proposition 2: Prove that with probability greater than 1 � � the
following inequalities hold:

k ˆA�AkHS  322

3

p
n
log

4

�
, kˆb� bkH  32M2

3

p
n

log

4

�
,

�

�

�

ˆT � T
�

�

�

HS
 16

3

p
n
log

2

�
,

�

�

�

1

n

n
X

i=1

S⇤
xi
yi � S⇤g⇢

�

�

�

H
 16

p
M

3

p
n

log

2

�
.

STEP 6 (approximation error bound, see Theorem 6): Prove that, if Assumption 2 holds for
some r 2 ]0,+1[, then E(wt) � infH E 

�

r/�t
�2rkgk2⇢. Moreover, if Assumption 2 holds with

r = 1/2, then kwt � w†kH ! 0, and if Assumption 2 holds for some r 2 ]1/2,+1[, then
kwt � w†kH 

� r�1/2
�t

�r�1/2kgk⇢.

STEP 7: Plug the sample and approximation error bounds obtained in STEP 1-5 and STEP 6 in
(19) and (20), respectively.

4 Experiments

Synthetic data. We consider a scalar linear regression problem with random design. The input
points (xi)1in are uniformly distributed in [0, 1] and the output points are obtained as yi =

hw⇤,�(xi)i+Ni, where Ni is a Gaussian noise with zero mean and standard deviation 1 and � =

('k)1kd is a dictionary of functions whose k-th element is 'k(x) = cos((k�1)x)+sin((k�1)x).
In Figure 1, we plot the test error for d = 5 (with n = 80 in (a) and 800 in (b)). The plots show
that the number of the epochs acts as a regularization parameter, and that early stopping is beneficial
to achieve a better test error. Moreover, according to the theory, the experiments suggest that the
number of performed epochs increases if the number of available training points increases.

Real data. We tested the kernelized version of our algorithm (see Remark 1 and Appendix A)
on the cpuSmall3, Adult and Breast Cancer Wisconsin (Diagnostic)

4 real-world
3Available at http://www.cs.toronto.edu/

˜

delve/data/comp-activ/desc.html

4
Adult and Breast Cancer Wisconsin (Diagnostic), UCI repository, 2013.
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Figure 1: Test error as a function of the number of iterations. In (a), n = 80, and total number of
iterations of IIR is 8000, corresponding to 100 epochs. In (b), n = 800 and the total number of
epochs is 400. The best test error is obtained for 9 epochs in (a) and for 31 epochs in (b).

datasets. We considered a subset of Adult, with n = 1600. The results are shown in Figure 2. A
comparison of the test errors obtained with the kernelized version of the method proposed in this
paper (Kernel Incremental Iterative Regularization (KIIR)), Kernel Iterative Regularization (KIR),
that is the kernelized version of gradient descent, and Kernel Ridge Regression (KRR) is reported in
Table 1. The results show that the test error of KIIR is comparable to that of KIR and KRR.

Iterations ×10 6
0 1 2 3 4

E
rr

o
r

0

0.02

0.04

0.06

0.08

0.1
Validation Error
Training Error

Figure 2: Training (orange) and validation (blue) classification errors obtained by KIIR on the
Breast Cancer dataset as a function of the number of iterations. The test error increases after a
certain number of iterations, while the training error is “decreasing” with the number of iterations.

Table 1: Test error comparison on real datasets. Median values over 5 trials.
Dataset ntr d Error Measure KIIR KRR KIR

cpuSmall 5243 12 RMSE 5.9125 3.6841 5.4665
Adult 1600 123 Class. Err. 0.167 0.164 0.154

Breast Cancer 400 30 Class. Err. 0.0118 0.0118 0.0237
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