NIPS Proceedingsβ

Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Both learning and inference tasks on Bayesian networks are NP-hard in general. Bounded tree-width Bayesian networks have recently received a lot of attention as a way to circumvent this complexity issue; however, while inference on bounded tree-width networks is tractable, the learning problem remains NP-hard even for tree-width~2. In this paper, we propose bounded vertex cover number Bayesian networks as an alternative to bounded tree-width networks. In particular, we show that both inference and learning can be done in polynomial time for any fixed vertex cover number bound $k$, in contrast to the general and bounded tree-width cases; on the other hand, we also show that learning problem is W[1]-hard in parameter $k$. Furthermore, we give an alternative way to learn bounded vertex cover number Bayesian networks using integer linear programming (ILP), and show this is feasible in practice.