NIPS Proceedingsβ

Space-Time Local Embeddings

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Reviews]


Conference Event Type: Poster


Space-time is a profound concept in physics. This concept was shown to be useful for dimensionality reduction. We present basic definitions with interesting counter-intuitions. We give theoretical propositions to show that space-time is a more powerful representation than Euclidean space. We apply this concept to manifold learning for preserving local information. Empirical results on non-metric datasets show that more information can be preserved in space-time.