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Abstract

We consider a generalization of the submodular cover problem based on the con-
cept of diminishing return property on the integer lattice. We are motivated by
real scenarios in machine learning that cannot be captured by (traditional) sub-
modular set functions. We show that the generalized submodular cover problem
can be applied to various problems and devise a bicriteria approximation algo-
rithm. Our algorithm is guaranteed to output a log-factor approximate solution
that satisfies the constraints with the desired accuracy. The running time of our
algorithm is roughly O(n log(nr) log r), where n is the size of the ground set and
r is the maximum value of a coordinate. The dependency on r is exponentially
better than the naive reduction algorithms. Several experiments on real and artifi-
cial datasets demonstrate that the solution quality of our algorithm is comparable
to naive algorithms, while the running time is several orders of magnitude faster.

1 Introduction

A function f : 2S → R+ is called submodular if f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for
all X,Y ⊆ S, where S is a finite ground set. An equivalent and more intuitive definition is by
the diminishing return property: f(X ∪ {s}) − f(X) ≥ f(Y ∪ {s}) − f(Y ) for all X ⊆ Y and
s ∈ S \ Y . In the last decade, the optimization of a submodular function has attracted particular
interest in the machine learning community. One reason of this is that many real-world models
naturally admit the diminishing return property. For example, document summarization [12, 13],
influence maximization in viral marketing [7], and sensor placement [10] can be described with the
concept of submodularity, and efficient algorithms have been devised by exploiting submodularity
(for further details, refer to [8]).

A variety of proposed models in machine learning [4, 13, 18] boil down to the submodular cover
problem [21]; for given monotone and nonnegative submodular functions f, c : 2S → R+, and
α > 0, we are to

minimize c(X) subject to f(X) ≥ α. (1)
Intuitively, c(X) and f(X) represent the cost and the quality of a solution, respectively. The objec-
tive of this problem is to find X of minimum cost with the worst quality guarantee α. Although this
problem is NP-hard since it generalizes the set cover problem, a simple greedy algorithm achieves
tight log-factor approximation and it practically performs very well.

The aforementioned submodular models are based on the submodularity of a set function, a function
defined on 2S . However, we often encounter problems that cannot be captured by a set function. Let
us give two examples:

Sensor Placement: Let us consider the following sensor placement scenario. Suppose that we
have several types of sensors with various energy levels. We assume a simple trade-off between
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information gain and cost. Sensors of a high energy level can collect a considerable amount of
information, but we have to pay a high cost for placing them. Sensors of a low energy level can
be placed at a low cost, but they can only gather limited information. In this scenario, we want to
decide which type of sensor should be placed at each spot, rather than just deciding whether to place
a sensor or not. Such a scenario is beyond the existing models based on submodular set functions.

Optimal Budget Allocation: A similar situation also arises in the optimal budget allocation prob-
lem [2]. In this problem, we want to allocate budget among ad sources so that (at least) a certain
number of customers is influenced while minimizing the total budget. Again, we have to decide
how much budget should be set aside for each ad source, and hence set functions cannot capture the
problem.

We note that a function f : 2S → R+ can be seen as a function defined on a Boolean hypercube
{0, 1}S . Then, the above real scenarios prompt us to generalize the submodularity and the diminish-
ing return property to functions defined on the integer lattice ZS+. The most natural generalization
of the diminishing return property to a function f : ZS+ → R+ is the following inequality:

f(x + χs)− f(x) ≥ f(y + χs)− f(y) (2)
for x ≤ y and s ∈ S, where χs is the s-th unit vector. If f satisfies (2), then f also satisfies the
following lattice submodular inequality:

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (3)

for all x,y ∈ ZS+, where ∨ and ∧ are the coordinate-wise max and min operations, respectively.
While the submodularity and the diminishing return property are equivalent for set functions, this
is not the case for functions over the integer lattice; the diminishing return property (2) is stronger
than the lattice submodular inequality (3). We say that f is lattice submodular if f satisfies (3),
and if f further satisfies (2) we say that f is diminishing return submodular (DR-submodular for
short). One might feel that the DR-submodularity (2) is too restrictive. However, considering the
fact that the diminishing return is more crucial in applications, we may regard the DR-submodularity
(2) as the most natural generalization of the submodularity, at least for applications mentioned so
far [17, 6]. For example, under a natural condition, the objective function in the optimal budget al-
location satisfies (2) [17]. The DR-submodularity was also considered in the context of submodular
welfare [6].

In this paper, we consider the following generalization of the submodular cover problem for set
functions: Given a monotone DR-submodular function f : ZS+ → R+, a subadditive function
c : ZS+ → R+, α > 0, and r ∈ Z+, we are to

minimize c(x) subject to f(x) ≥ α, 0 ≤ x ≤ r1, (4)

where we say that c is subadditive if c(x+y) ≤ c(x)+c(y) for all x,y ∈ ZS+. We call problem (4)
the DR-submodular cover problem. This problem encompasses problems that boil down to the sub-
modular cover problem for set functions and their generalizations to the integer lattice. Furthermore,
the cost function c is generalized to a subadditive function. In particular, we note that two examples
given above can be rephrased using this problem (see Section 4 for details).

If c is also monotone DR-submodular, one can reduce the problem (4) to the set version (1) (for
technical details, see Section 3.1). The problem of this naive reduction is that it only yields a
pseudo-polynomial time algorithm; the running time depends on r rather than log r. Since r can be
huge in many practical settings (e.g., the maximum energy level of a sensor), even linear dependence
on r could make an algorithm impractical. Furthermore, for a general subadditive function c, this
naive reduction does not work.

1.1 Our Contribution

For the problem (4), we devise a bicriteria approximation algorithm based on the decreasing thresh-
old technique of [3]. More precisely, our algorithm takes the additional parameters 0 < ε, δ < 1. The
output x ∈ ZS+ of our algorithm is guaranteed to satisfy that c(x) is at most (1 + 3ε)ρ

(
1 + log d

β

)
times the optimum and f(x) ≥ (1 − δ)α, where ρ is the curvature of c (see Section 3 for the def-
inition), d = maxs f(χs) is the maximum value of f over all standard unit vectors, and β is the
minimum value of the positive increments of f in the feasible region.
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Running Time (dependency on r): An important feature of our algorithm is that the running
time depends on the bit length of r only polynomially whereas the naive reduction algorithms de-
pend on it exponentially as mentioned above. More precisely, the running time of our algorithm is
O(nε log nrcmax

δcmin
log r), which is polynomial in the input size, whereas the naive algorithm is only

psuedo-polynomial time algorithm. In fact, our experiments using real and synthetic datasets show
that our algorithm is considerably faster than naive algorithms. Furthermore, in terms of the objec-
tive value (that is, the cost of the output), our algorithm also exhibits comparable performance.

Approximation Guarantee: Our approximation guarantee on the cost is almost tight. Note that
the DR submodular cover problem (4) includes the set cover problem, in which we are given a
collection of sets, and we want to find a minimum number of sets that covers all the elements. In
our context, S corresponds to the collection of sets, the cost c is the number of chosen sets, and f
is the number of covered elements. It is known that we cannot obtain an o(logm)-approximation
unless P 6= NP, where m is the number of elements [16]. However, since for the set cover problem
we have ρ = 1, d = O(m), and β = 1, our approximation guarantee is O(logm).

1.2 Related Work

Our result can be compared with several results in the literature for the submodular cover problem
for set functions. It is shown by Wolsey [21] that if c(X) = |X|, a simple greedy algorithm yields
(1 + log d

β )-approximation, which coincides with our approximation ratio except for the (1 + 3ε)

factor. Note that ρ = 1 when c(X) = |X|, or more generally, when c is modular. Recently, Wan
et al. [20] discussed a slightly different setting, in which c is also submodular and both f and c
are integer valued. They proved that the greedy algorithm achieves ρH(d)-approximation, where
H(d) = 1+1/2+· · ·+1/d is the d-th harmonic number. Again, their ratio asymptotically coincides
with our approximation ratio (Note that β ≥ 1 when f is integer valued).

Another common submodular-based model in machine learning is in the form of the submodular
maximization problem: Given a monotone submodular set function f : {0, 1}S → R+ and a feasible
set P ⊆ [0, 1]

S (e.g., a matroid polytope or a knapsack polytope), we want to maximize f(x) subject
to x ∈ P ∩ {0, 1}S . Such models can be widely found in various tasks as already described. We
note that the submodular cover problem and the submodular maximization problem are somewhat
dual to each other. Indeed, Iyer and Bilmes [5] showed that a bicriteria algorithm of one of these
problems yields a bicriteria algorithm for the other. Being parallel to our setting, generalizing the
submodular maximization problem to the integer lattice ZS+ is a natural question. In this direction,
Soma et al. [17] considered the maximization of lattice submodular functions (not necessarily being
DR-submodular) and devised a constant-factor approximation pseudo-polynomial time algorithm.
We note that our result is not implied by [17] via the duality of [5]. In fact, such reduction only
yields a pseudo-polynomial time algorithm.

1.3 Organization of This Paper

The rest of this paper is organized as follows: Section 2 sets the mathematical basics of submod-
ular functions over the integer lattice. Section 3 describes our algorithm and the statement of our
main theorem. In Section 4, we show various experimental results using real and artificial datasets.
Section 5 sketches the proof of the main theorem. Finally, we conclude the paper in Section 6.

2 Preliminaries

Let S be a finite set. For each s ∈ S, we denote the s-th unit vector by χs; that is, χs(t) = 1
if t = s, otherwise χs(t) = 0. A function f : ZS → R is said to be lattice submodular if
f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) for all x,y ∈ ZS . A function f is monotone if f(x) ≥ f(y)
for all x,y ∈ ZS with x ≥ y. For x,y ∈ ZS and a function f : ZS → R, we denote f(y |
x) := f(y + x) − f(x). A function f is diminishing return submodular (or DR-submodular) if
f(x + χs) − f(x) ≥ f(y + χs) − f(y) for each x ≤ y ∈ ZS and s ∈ S. For a DR-submodular
function f , one can immediately check that f(kχs | x) ≥ f(kχs | y) for arbitrary x ≤ y, s ∈ S,
and k ∈ Z+. A function f is subadditive if f(x + y) ≤ f(x) + f(y) for x,y ∈ ZS . For each
x ∈ ZS+, we define {x} to be the multiset in which each s ∈ S is contained x(s) times.
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In [17], a lattice submodular function f : ZS → R is said to have the diminishing return property if
f is coordinate-wise concave: f(x+ 2χs)− f(x+ χs) ≤ f(x+ χs)− f(x) for each x ∈ ZS and
s ∈ S. We note that our definition is consistent with [17]. Formally, we have the following lemma,
whose proof can be found in Appendix.

Lemma 2.1. A function f : ZS → R is DR-submodular if and only if f is lattice submodular and
coordinate-wise concave.

The following is fundamental for a monotone DR-submodular function. A proof is placed in Ap-
pendix due to the limitation of space.

Lemma 2.2. For a monotone DR-submodular function f , f(x) − f(y) ≤
∑
s∈{x} f(χs | y) for

arbitrary x,y ∈ ZS .

3 Algorithm for the DR-submodular Cover

Recall the DR-submodular cover problem (4). Let f : ZS+ → R+ be a monotone DR-submodular
function and let c : ZS+ → R+ be a subadditive cost function. The objective is to minimize c(x)
subject to f(x) ≥ α and 0 ≤ x ≤ r1, where α > 0 and r ∈ Z+ are the given constants. Without
loss of generality, we can assume that max{f(x) : 0 ≤ x ≤ r1} = α (otherwise, we can consider
f̂(x) := min{f(x), α} instead of f ). Furthermore, we can assume c(x) > 0 for any x ∈ ZS+.

A pseudocode description of our algorithm is presented in Algorithm 1. The algorithm can be viewed
as a modified version of the greedy algorithm and works as follows: We start with the initial solution
x = 0 and increase each coordinate of x gradually. To determine the amount of increments, the
algorithm maintains a threshold θ that is initialized to be sufficiently large enough. For each s ∈ S,
the algorithm finds the largest integer step size 0 < k ≤ r − x(s) such that the marginal cost-gain
ratio f(kχs|x)

kc(χs) is above the threshold θ. If such k exists, the algorithm updates x to x + kχs. After
repeating this for each s ∈ S, the algorithm decreases the threshold θ by a factor of (1 − ε). If x
becomes feasible, the algorithm returns the current x. Even if x does not become feasible, the final
x satisfies f(x) ≥ (1− δ)α if we iterate until θ gets sufficiently small.

Algorithm 1 Decreasing Threshold for the DR-Submodular Cover Problem
Input: f : ZS+ → R+, c : ZS+ → R+, r ∈ N, α > 0, ε > 0, δ > 0.
Output: 0 ≤ x ≤ r1 such that f(x) ≥ α.

1: x← 0, d← max
s∈S

f(χs), cmin ← min
s∈S

c(χs), cmax ← max
s∈S

c(χs)

2: for (θ = d
cmin

; θ ≥ δ
ncmaxr

d; θ ← θ(1− ε)) do
3: for all s ∈ S do
4: Find maximum integer 0 < k ≤ r − x(s) such that f(kχs|x)

kc(χs) ≥ θ with binary search.
5: If such k exists then x← x + kχs.
6: If f(x) ≥ α then break the outer for loop.
7: return x

Before we claim the theorem, we need to define several parameters on f and c. Let β := min{f(χs |
x) : s ∈ S,x ∈ ZS+, f(χs | x) > 0} and d := maxs f(χs). Let cmax := maxs c(χs) and
cmin := mins c(χs). Define the curvature of c to be

ρ := min
x∗:optimal solution

∑
s∈{x∗} c(χs)

c(x∗)
. (5)

Definition 3.1. For γ ≥ 1 and 0 < δ < 1, a vector x ∈ ZS+ is a (γ, δ)-bicriteria approximate
solution if c(x) ≤ γ · c(x∗), f(x) ≥ (1− δ)α, and 0 ≤ x ≤ r1.

Our main theorem is described below. We sketch the proof in Section 5.

Theorem 3.2. Algorithm 1 outputs a
(

(1 + 3ε)ρ
(

1 + log d
β

)
, δ
)

-bicriteria approximate solution

in O
(
n
ε log nrcmax

δcmin
log r

)
time.
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3.1 Discussion
Integer-valued Case. Let us make a simple remark on the case that f is integer valued. Without
loss of generality, we can assume α ∈ Z+. Then, Algorithm 1 always returns a feasible solution for
any 0 < δ < 1/α. Therefore, our algorithm can be easily modified to an approximation algorithm
if f is integer valued.

Definition of Curvature. Several authors [5, 19] use a different notion of curvature called the
total curvature, whose natural extension for a function over the integer lattice is as follows: The
total curvature κ of c : ZS+ → R+ is defined as κ := 1 − mins∈S

c(χs|r1−χs)
c(χs) . Note that κ = 0

if c is modular, while ρ = 1 if c is modular. For example, Iyer and Bilmes [5] devised a bicriteria
approximation algorithm whose approximation guarantee is roughly O((1− κ)−1 log β

d ).

Let us investigate the relation between ρ and κ for DR-submodular functions. One can show that
1 − κ ≤ ρ ≤ (1 − κ)−1 (see Lemma E.1 in Appendix), which means that our bound in terms of ρ
is tighter than one in terms of (1− κ)−1.

Comparison to Naive Reduction Algorithm. If c is also a monotone DR-submodular function,
one can reduce (4) to the set version (1) as follows. For each s ∈ S, create r copies of s and let
S̃ be the set of these copies. For X̃ ⊆ S̃, define xX̃ ∈ ZS+ be the integral vector such that xX̃(s)

is the number of copies of s contained in X̃ . Then, f̃(X̃) := f(xX̃) is submodular. Similarly,
c̃(X̃) := c(xX̃) is also submodular if c is a DR-submodular function. Therefore we may apply a
standard greedy algorithm of [20, 21] to the reduced problem and this is exactly what Greedy does
in our experiment (see Section 4). However, this straightforward reduction only yields a pseudo-
polynomial time algorithm since |S̃| = nr; even if the original algorithm was linear, the resulting
algorithm would require O(nr) time. Indeed this difference is not negligible since r can be quite
large in practical applications, as illustrated by our experimental evaluation.

Lazy Evaluation. We finally note that we can combine the lazy evaluation technique [11, 14],
which significantly reduces runtime in practice, with our algorithm. Specifically, we first push all
the elements in S to a max-based priority queue. Here, the key of an element s ∈ S is f(χs)

c(χs) . Then
the inner loop of Algorithm 1 is modified as follows: Instead of checking all the elements in S,
we pop elements whose keys are at least θ. For each popped element s ∈ S, we find k such that
0 < k ≤ r − x(s) with f(kχs|x)

kc(χs) ≥ θ with binary search. If there is such k, we update x with

x + kχs. Finally, we push s again with the key f(χs|x)
c(χs) if x(s) < r.

The correctness of this technique is obvious because of the DR-submodularity of f . In particular,
the key of each element s ∈ S in the queue is always at least f(χs|x)

c(χs) , where x is the current vector.

Hence, we never miss s ∈ S with f(kχs|x)
kc(χs) ≥ θ.

4 Experiments

4.1 Experimental Setting

We conducted experiments on a Linux server with an Intel Xeon E5-2690 (2.90 GHz) processor and
256 GB of main memory. The experiments required, at most, 4 GB of memory. All the algorithms
were implemented in C++ and compiled with g++ 4.6.3.

In our experiments, the cost function c : ZS+ → R+ is always chosen as c(x) = ‖x‖1 :=∑
s∈S x(s). Let f : ZS+ → R+ be a submodular function and α be the worst quality guarantee.

We implemented the following four methods:

• Decreasing-threshold is our method with the lazy evaluation technique. We chose δ =
0.01 as stated otherwise.

• Greedy is a method in which, starting from x = 0, we iteratively increment x(s) for s ∈ S
that maximizes f(x + χs) − f(x) until we get f(x) ≥ α. We also implemented the lazy
evaluation technique [11].
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• Degree is a method in which we assign x(s) a value proportional to the marginal f(χs)−
f(0), where ‖x‖1 is determined by binary search so that f(x) ≥ α. Precisely speaking,
x(s) is approximately proportional to the marginal since x(s) must be an integer.
• Uniform is a method that returns k1 for minimum k ∈ Z+ such that f(k1) ≥ α.

We use the following real-world and synthetic datasets to confirm the accuracy and efficiency of our
method against other methods. We set r = 100, 000 for both problems.

Sensor placement. We used a dataset acquired by running simulations on a 129-vertex sensor
network used in Battle of the Water Sensor Networks (BWSN) [15]. We used the “bwsn-utilities” [1]
program to simulate 3000 random injection events to this network for a duration of 96 hours. Let S
and E be the set of the 129 sensors in the network and the set of the 3000 events, respectively. For
each sensor s ∈ S and event e ∈ E, a value z(s, e) is provided, which denotes the time, in minutes,
the pollution has reached s after the injection time.1

We define a function f : ZS+ → R+ as follows: Let x ∈ ZS+ be a vector, where we regard x(s) as
the energy level of the sensor s. Suppose that when the pollution reaches a sensor s, the probability
that we can detect it is 1− (1− p)x(s), where p = 0.0001. In other words, by spending unit energy,
we obtain an extra chance of detecting the pollution with probability p. For each event e ∈ E, let se
be the first sensor where the pollution is detected in that injection event. Note that se is a random
variable. Let z∞ = max

e∈E,s∈S
z(s, e). Then, we define f as follows:

f(x) = E
e∈E

E
se

[z∞ − z(se, e)],

where z(se, e) is defined as z∞ when there is no sensor that managed to detect the pollution. In-
tuitively speaking, E

se
[z∞ − z(se, e)] expresses how much time we managed to save in the event e

on average. Then, we take the average over all the events. A similar function was also used in [11]
to measure the performance of a sensor allocation although they only considered the case p = 1.
This corresponds to the case that by spending unit energy at a sensor s, we can always detect the
pollution that has reached s. We note that f(x) is DR-submodular (see Lemma F.1 for the proof).

Budget allocation problem. In order to observe the behavior of our algorithm for large-scale
instances, we created a synthetic instance of the budget allocation problem [2, 17] as follows: The
instance can be represented as a bipartite graph (S, T ;E), where S is a set of 5,000 vertices and T
is a set of 50,000 vertices. We regard a vertex in S as an ad source, and a vertex in T as a person.
Then, we fix the degrees of vertices in S so that their distribution obeys the power law of γ := 2.5;
that is, the fraction of ad sources with out-degree d is proportional to d−γ . For a vertex s ∈ S of
the supposed degree d, we choose d vertices in T uniformly at random and connect them to s with
edges. We define a function f : ZS+ → R+ as

f(x) =
∑
t∈T

(
1−

∏
s∈Γ(t)

(1− p)x(s)
)
, (6)

where Γ(t) is the set of vertices connected to t and p = 0.0001. Here, we suppose that, by investing
a unit cost to an ad source s ∈ S, we have an extra chance of influencing a person t ∈ T with
s ∈ Γ(t) with probability p. Then, f(x) can be seen as the expected number of people influenced
by ad sources. We note that f is known to be a monotone DR-submodular function [17].

4.2 Experimental Results

Figure 1 illustrates the obtained objective value ‖x‖1 for various choices of the worst quality guar-
antee α on each dataset. We chose ε = 0.01 in Decreasing threshold. We can observe that De-
creasing threshold attains almost the same objective value as Greedy, and it outperforms Degree
and Uniform.

Figure 2 illustrates the runtime for various choices of the worst quality guarantee α on each dataset.
We chose ε = 0.01 in Decreasing threshold. We can observe that the runtime growth of Decreas-
ing threshold is significantly slower than that of Greedy.

1Although three other values are provided, they showed similar empirical results and we omit them.
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Figure 3: Effect of ε

Figures 3(a) and 3(b) show the relative increase of the objective value and the runtime, respectively,
of our method against Greedy on the BWSN dataset. We can observe that the relative increase of the
objective value gets smaller as α increases. This phenomenon can be well explained by considering
the extreme case that α = max f(r1). In this case, we need to choose x = r1 anyway in order to
achieve the worst quality guarantee, and the order of increasing coordinates of x does not matter.
Also, we can see that the empirical runtime grows as a function of 1

ε , which matches our theoretical
bound.

5 Proof of Theorem 3.2

In this section, we outline the proof of the main theorem. Proofs of some minor claims can be found
in Appendix.

First, we introduce a notation. Let us assume that x is updated L times in the algorithm. Let xi be
the variable x after the i-th update (i = 0, . . . , L). Note that x0 = 0 and xL is the final output of
the algorithm. Let si ∈ S and ki ∈ Z+ be the pair used in the i-th update for i = 1, . . . , L; that is,
xi = xi−1 + kiχsi for i = 1, . . . , L. Let µ0 := 0 and µi :=

kic(χsi
)

f(kiχsi
|xi−1) for i = 1, . . . , L. Let

µ̂0 := 0 and µ̂i := θ−1
i for i = 1, . . . , L, where θi is the threshold value on the i-th update. Note that

µ̂i−1 ≤ µ̂i for i = 1, . . . , L. Let x∗ be an optimal solution such that ρ · c(x∗) =
∑
s∈{x∗} c(χs).

We regard that in the i-th update, the elements of {x∗} are charged by the value of µi(f(χs |
xi−1)− f(χs | xi)). Then, the total charge on {x∗} is defined as

T (x, f) :=
∑

s∈{x∗}

L∑
i=1

µi(f(χs | xi−1)− f(χs | xi)).

Claim 5.1. Let us fix 1 ≤ i ≤ L arbitrary and let θ be the threshold value on the i-th update. Then,
f(kiχsi | xi−1)

kic(χsi)
≥ θ and

f(χs | xi−1)

c(χs)
≤ θ

1− ε
(s ∈ S).

Eliminating θ from the inequalities in Claim 5.1, we obtain
kic(χsi)

f(kiχsi | xi−1)
≤ 1

1− ε
c(χs)

f(χs | xi−1)
(i = 1, . . . , L, s ∈ S) (7)
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Furthermore, we have µi ≤ µ̂i ≤ 1
1−εµi for i = 1, . . . , L.

Claim 5.2. c(x) ≤ 1
1−εT (x, f).

Claim 5.3. For each s ∈ {x∗}, the total charge on s is at most 1
1−ε (1 + log(d/β))c(χs).

Proof. Let us fix s ∈ {x∗} and let l be the minimum i such that f(χs | xi) = 0. By (7), we have

µi =
kic(χsi)

f(kiχsi | xi−1)
≤ 1

1− ε
· c(χs)

f(χs | xi−1)
. (i = 1, . . . , l)

Then, we have
L∑
i=1

µi(f(χs | xi−1)− f(χs | xi)) =

l−1∑
i=1

µi(f(χs | xi−1)− f(χs | xi)) + µlf(χs | xl−1)

≤ 1

1− ε
c(χs)

( l−1∑
i=1

(f(χs | xi−1)− f(χs | xi))
f(χs | xi−1)

+
f(χs | xl−1)

f(χs | xl−1)

)
≤ 1

1− ε
c(χs)

(
1 +

l−1∑
i=1

(
1− f(χs | xi)

f(χs | xi−1)

))
≤ 1

1− ε
c(χs)

(
1 +

l−1∑
i=1

log
f(χs | xi−1)

f(χs | xi)

)
(since 1− 1/x ≤ log x for x ≥ 1)

=
1

1− ε
c(χs)

(
1 + log

f(χs | x0)

f(χs | xl−1)

)
≤ 1

1− ε

(
1 + log

d

β

)
c(χs)

Proof of Theorem 3.2. Combining these claims, we have

c(x) ≤ 1

1− ε
· T (x, f) ≤ 1

(1− ε)2
·
(

1 + log
d

β

)
·
∑

s∈{x∗}

c(χs) ≤ (1 + 3ε) ·
(

1 + log
d

β

)
· ρc(x∗).

Thus, x is an approximate solution with the desired ratio.

Let us see that x approximately satisfies the constraint; that is, f(x) ≥ (1 − δ)α. We will now
consider a slightly modified version of the algorithm; in the modified algorithm, the threshold is
updated until f(x) = α. Let x′ be the output of the modified algorithm. Then, we have

f(x′)− f(x) ≤
∑

s∈{x′}

f(χs | x) ≤
∑

s∈{x′}

δc(χs)

cmaxnr
d ≤ δd ≤ δα

The third inequality holds since c(χs) ≤ cmax and |{x′}| ≤ nr. Thus f(x) ≥ (1− δ)α.

6 Conclusions

In this paper, motivated by real scenarios in machine learning, we generalized the submodular cover
problem via the diminishing return property over the integer lattice. We proposed a bicriteria ap-
proximation algorithm with the following properties: (i) The approximation ratio to the cost almost
matches the one guaranteed by the greedy algorithm [21] and is almost tight in general. (ii) We can
satisfy the worst solution quality with the desired accuracy. (iii) The running time of our algorithm
is roughly O(n log n log r). The dependency on r is exponentially better than that of the greedy al-
gorithm. We confirmed by experiment that compared with the greedy algorithm, the solution quality
of our algorithm is almost the same and the runtime is several orders of magnitude faster.
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