Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews Supplemental

Authors

Christoph Dann, Emma Brunskill

Abstract

Recently, there has been significant progress in understanding reinforcement learning in discounted infinite-horizon Markov decision processes (MDPs) by deriving tight sample complexity bounds. However, in many real-world applications, an interactive learning agent operates for a fixed or bounded period of time, for example tutoring students for exams or handling customer service requests. Such scenarios can often be better treated as episodic fixed-horizon MDPs, for which only looser bounds on the sample complexity exist. A natural notion of sample complexity in this setting is the number of episodes required to guarantee a certain performance with high probability (PAC guarantee). In this paper, we derive an upper PAC bound of order O(|S|²|A|H² log(1/δ)/ɛ²) and a lower PAC bound Ω(|S||A|H² log(1/(δ+c))/ɛ²) (ignoring log-terms) that match up to log-terms and an additional linear dependency on the number of states |S|. The lower bound is the first of its kind for this setting. Our upper bound leverages Bernstein's inequality to improve on previous bounds for episodic finite-horizon MDPs which have a time-horizon dependency of at least H³.