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Abstract
This paper formulates the search for a set of bounding boxes (as needed in object
proposal generation) as a monotone submodular maximization problem over the
space of all possible bounding boxes in an image. Since the number of possible
bounding boxes in an image is very large O(#pixels2), even a single linear scan
to perform the greedy augmentation for submodular maximization is intractable.
Thus, we formulate the greedy augmentation step as a Branch-and-Bound scheme.
In order to speed up repeated application of B&B, we propose a novel generaliza-
tion of Minoux’s ‘lazy greedy’ algorithm to the B&B tree. Theoretically, our
proposed formulation provides a new understanding to the problem, and contains
classic heuristic approaches such as Sliding Window+Non-Maximal Suppression
(NMS) and and Efficient Subwindow Search (ESS) as special cases. Empirically,
we show that our approach leads to a state-of-art performance on object proposal
generation via a novel diversity measure.

1 Introduction
A number of problems in Computer Vision and Machine Learning involve searching for a set of
bounding boxes or rectangular windows. For instance, in object detection [9, 16, 17, 19, 34, 36, 37],
the goal is to output a set of bounding boxes localizing all instances of a particular object category.
In object proposal generation [2, 7, 39, 41], the goal is to output a set of candidate bounding boxes
that may potentially contain an object (of any category). Other scenarios include face detection,
multi-object tracking and weakly supervised learning [10].
Classical Approach: Enumeration + Diverse Subset Selection. In the context of object detection,
the classical paradigm for searching for a set of bounding boxes used to be:

• Sliding Window [9, 16, 40]: i.e., enumeration over all windows in an image with some
level of sub-sampling, followed by

• Non-Maximal Suppression (NMS): i.e., picking a spatially-diverse set of windows by
suppressing windows that are too close or overlapping.

As several previous works [3,26,40] have recognized, the problem with this approach is inefficiency
– the number of possible bounding boxes or rectangular subwindows in an image is O(#pixels2).
Even a low-resolution (320 x 240) image contains more than one billion rectangular windows [26]!
As a result, modern object detection pipelines [17, 19, 36] often rely on object proposals as a pre-
processing step to reduce the number of candidate object locations to a few hundreds or thousands
(rather than billions).
Interestingly, this migration to object proposals has simply pushed the problem (of searching for a
set of bounding boxes) upstream. Specifically, a number of object proposal techniques [8, 32, 41]
involve the same enumeration + NMS approach – except they typically use cheaper features to be a
fast proposal generation step.
Goal. The goal of this paper is to formally study the search for a set of bounding boxes as an op-
timization problem. Clearly, enumeration + post-processing for diversity (via NMS) is one widely-
used heuristic approach. Our goal is to formulate a formal optimization objective and propose an
efficient algorithm, ideally with guarantees on optimization performance.
Challenge. The key challenge is the exponentially-large search space – the number of possible
M -sized sets of bounding boxes is

(
O(#pixels2)

M

)
= O(#pixels2M ) (assuming M ≤ #pixels2/2).
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Figure 1: Overview of our formulation: SubmodBoxes. We formulate the selection of a set of boxes as a con-
strained submodular maximization problem. The objective and marginal gains consists of two parts: relevance
and diversity. Figure (b) shows two candidate windows ya and yb. Relevance is the sum of edge strength
over all edge groups (black curves) wholly enclosed in the window. Figure (c) shows the diversity term. The
marginal gain in diversity due to a new window (ya or yb) is the ability of the new window to cover the refer-
ence boxes that are currently not well-covered with the already chosen set Y = {y1,y2}. In this case, we can
see that ya covers a new reference box b1. Thus, the marginal gain in diversity of ya will be larger than yb.

Overview of our formulation: SubmodBoxes. Let Y denote the set of all possible bounding boxes
or rectangular subwindows in an image. This is a structured output space [4,21,38], with the size of
this set growing quadratically with the size of the input image, |Y| = O(#pixels2).
We formulate the selection of a set of boxes as a search problem on the power set 2Y . Specifically,
given a budget of M windows, we search for a set Y of windows that are both relevant (e.g., have
high likelihood of containing an object) and diverse (to cover as many objects instances as possible):

argmax
Y ∈2Y︸ ︷︷ ︸

search over power-set

F (Y )︸ ︷︷ ︸
objective

= R(Y )︸ ︷︷ ︸
relevance

+ λ︸︷︷︸
trade-off parameter

D(Y )︸ ︷︷ ︸
diversity

s.t. |Y | ≤M︸ ︷︷ ︸
budget constraint

(1)

Crucially, when the objective function F : 2Y → R is monotone and submodular, then a simple
greedy algorithm (that iteratively adds the window with the largest marginal gain [24]) achieves a
near-optimal approximation factor of (1− 1

e ) [24, 30].
Unfortunately, although conceptually simple, this greedy augmentation step requires an enumeration
over the space of all windows Y and thus a naïve implementation is intractable.
In this work, we show that for a broad class of relevance and diversity functions, this greedy augmen-
tation step may be efficiently formulated as a Branch-and-Bound (B&B) step [12, 26], with easily
computable upper-bounds. This enables an efficient implementation of greedy, with significantly
fewer evaluations than a linear scan over Y .
Finally, in order to speed up repeated application of B&B across iterations of the greedy algorithm,
we present a novel generalization of Minoux’s ‘lazy greedy’ algorithm [29] to the B&B tree, where
different branches are explored in a lazy manner in each iteration.
We apply our proposed technique SubmodBoxes to the task of generating object proposals [2, 7, 39,
41] on the PASCAL VOC 2007 [13], PASCAL VOC 2012 [14], and MS COCO [28] datasets. Our
results show that our approach outperforms all baselines.
Contributions. This paper makes the following contributions:

1. We formulate the search for a set of bounding boxes or subwindows as the constrained
maximization of a monotone submodular function. To the best of our knowledge, despite
the popularity of object recognition and object proposal generation, this is the first such
formal optimization treatment of the problem.

2. Our proposed formulation contains existing heuristics as special cases. Specifically, Slid-
ing Window + NMS can be viewed as an instantiation of our approach under a specific
definition of the diversity function D(·).

3. Our work can be viewed as a generalization of the ‘Efficient Subwindow Search (ESS)’
of Lampert et al. [26], who proposed a B&B scheme for finding the single best bounding
box in an image. Their extension to detecting multiple objects consisted of a heuristic
for ‘suppressing’ features extracted from the selected bounding box and re-running the
procedure. We show that this heuristic is a special case of our formulation under a specific
diversity function, thus providing theoretical justification to their intuitive heuristic.

4. To the best of our knowledge, our work presents the first generalization of Minoux’s ‘lazy
greedy’ algorithm [29] to structured-output spaces (the space of bounding boxes).
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5. Finally, our experimental contribution is a novel diversity measure which leads to state-of-
art performance on the task of generating object proposals.

2 Related Work
Our work is related to a few different themes of research in Computer Vision and Machine Learning.
Submodular Maximization and Diversity. The task of searching for a diverse high-quality subset
of items from a ground set has been well-studied in a number of application domains [6, 11, 22,
25, 27, 31], and across these domains submodularity has emerged as an a fundamental property of
set functions for measuring diversity of a subset of items. Most previous work has focussed on
submodular maximization on unstructured spaces, where the ground set is efficiently enumerable.
Our work is closest in spirit to Prasad et al. [31], who studied submodular maximization on struc-
tured output spaces, i.e. where each item in the ground set is itself a structured object (such as a
segmentation of an image). Unlike [31], our ground set Y is not exponentially large, only ‘quadrat-
ically’ large. However, enumeration over the ground set for the greedy-augmentation step is still
infeasible, and thus we use B&B. Such structured output spaces and greedy-augmentation oracles
were not explored in [31].
Bounding Box Search in Object Detection and Object Proposals. As we mention in the introduc-
tion, the search for a set of bounding boxes via heuristics such as Sliding Window + NMS used to be
the dominant paradigm in object recognition [9, 16, 40]. Modern pipelines have shifted that search
step to object proposal algorithms [17,19,36]. A comparison and overview of object proposals may
be found in [20]. Zitnick et al. [41] generate candidate bounding boxes via Sliding Window + NMS
based on an “objectness” score, which is a function of the number of contours wholly enclosed by
a bounding box. We use this objectness score as our relevance term, thus making SubmodBoxes
directly comparable to NMS. Another closely related work is [18], which presents an ‘active search’
strategy for reranking selective search [39] object proposals based on a contextual cues. Unlike this
work, our formulation is not restricted to any pre-selected set of windows. We search over the entire
power set 2Y , and may generate any possible set of windows (up to convergence tolerance in B&B).
Branch-and-Bound. One key building block of our work is the ‘Efficient Subwindow Search
(ESS)’ B&B scheme et al. [26]. ESS was originally proposed for single-instance object detec-
tion. Their extension to detecting multiple objects consisted of a heuristic for ‘suppressing’ features
extracted from the selected bounding box and re-running the procedure. In this work, we extend
and generalize ESS in multiple ways. First, we show that relevance (objectness scores) and diversity
functions used in object proposal literature are amenable to upper-bound and thus B&B optimiza-
tion. We also show that the ‘suppression’ heuristic used by [26] is a special case of our formulation
under a specific diversity function, thus providing theoretical justification to their intuitive heuristic.
Finally, [3] also proposed the use of B&B for NMS in object detection. Unfortunately, as we explain
later in the paper, the NMS objective is submodular but not monotone, and the classical greedy algo-
rithm does not have approximation guarantees in this setting. In contrast, our work presents a general
framework for bounding-box subset-selection based on monotone submodular maximization.

3 SubmodBoxes: Formulation and Approach
We begin by establishing the notation used in the paper.
Preliminaries and Notation. For an input image x, let Yx denote the set of all possible bounding
boxes or rectangular subwindows in this image. For simplicity, we drop the explicit dependance on
x, and just use Y . Uppercase letters refer to set functions F (·), R(·), D(·), and lowercase letter refer
to functions over individual items f(y), r(y).
A set function F : 2Y → R is submodular if its marginal gains F (b|S) ≡ F (S ∪ b) − F (S) are
decreasing, i.e. F (b|S) ≥ F (b|T ) for all sets S ⊆ T ⊆ Y and items b /∈ T . The function F is called
monotone if adding an item to a set does not hurt, i.e. F (S) ≤ F (T ), ∀S ⊆ T .
Constrained Submodular Maximization. From the classical result of Nemhauser [30], it is known
that cardinality constrained maximization of a monotone submodular F can be performed near-
optimally via a greedy algorithm. We start out with an empty set Y 0 = ∅, and iteratively add the
next ‘best’ item with the largest marginal gain over the chosen set :

Y t = Y t−1 ∪ yt, where yt = argmax
y∈Y

F (y | Y t−1). (2)

The score of the final solution YM is within a factor of (1 − 1
e ) of the optimal solution. The com-

putational bottleneck is that in each iteration, we must find the item with the largest marginal gain.
In our case, |Y| is the space of all rectangular windows in an image, and exhaustive enumeration

3



Figure 2: Priority queue in B&B scheme. Each vertex in the tree represents a set of windows. Blue rectangles
denote the largest and the smallest window in the set. Gray region denotes the rectangle set Yv . In each case,
the priority queue consists of all leaves in the B&B tree ranked by the upper bound Uv . Left: shows vertex v is
split along the right coordinate interval into equal halves: v1 and v2. Middle: The highest priority vertex v1 in
Q1 is further split along bottom coordinate into v3 and v4. Right: The highest priority vertex v4 in Q2 is split
along right coordinate into v5 and v6. This procedure is repeated until the highest priority vertex in the queue
is a single rectangle.

is intractable. Instead of exploring subsampling as is done in Sliding Window methods, we will
formulate this greedy augmentation step as an optimization problem solved with B&B.
Sets vs Lists. For pedagogical reasons, our problem setup is motivated with the language of sets
(Y, 2Y ) and subsets (Y ). In practice, our work falls under submodular list prediction [11, 33, 35].
The generalization from sets to lists allows reasoning about an ordering of the items chosen and
(potentially) repeated entries in the list. Our final solution YM is an (ordered) list not an (unordered)
set. All guarantees of greedy remain the same in this generalization [11, 33, 35].
3.1 Parameterization of Y and Branch-and-Bound Search
In this subsection, we briefly recap the Efficient Subwindow Search (ESS) of Lampert et al. [26],
which is used a key building block in this work. The goal of [26] is to maximize a (potentially
non-smooth) objective function over the space of all rectangular windows: maxy∈Y f(y).
A rectangular window y ∈ Y is parameterized by its top, bottom, left, and right coordinates y =
(t, b, l, r). A set of windows is represented by using intervals for each coordinate instead of a single
integer, for example [T,B,L,R], where T = [tlow, thigh] is a range. In this parameterization, the
set of all possible boxes in an (h×w)-sized image can be written as Y = [[1, h], [1, h], [1, w], [1, w]].
Branch-and-Bound over Y . ESS creates a B&B tree, where each vertex v in the tree is a rect-
angle set Yv and an associated upper-bound on the objective function achievable in this set, i.e.
maxy∈Yv f(y) ≤ Uv . Initially, this tree consists of a single vertex, which is the entire search space
Y and (typically) a loose upper-bound. ESS proceeds in a best-first manner [26]. In each iteration,
the vertex/set with the highest upper-bound is chosen for branching, and then new upper-bounds
are computed on each of the two children/sub-sets created. In practice, this is implemented with a
priority queue over the vertices/sets that are currently leaves in the tree. Fig. 2 shows an illustration
of this procedure. The parent rectangle set is split along its largest coordinate interval into two equal
halves, thus forming disjoint children sets. B&B explores the tree in a best-first manner till a single
rectangle is identified with a score equal to the upper-bound at which point we have found a global
optimum. In our experiments, we show results with different convergence tolerances.
Objective. In our setup, the objective (at each greedy-augmentation step) is the marginal gain of
the window y w.r.t. the currently chosen list of windows Y t−1, i.e. f(y) = F (y | Y t−1) = R(y |
Y t−1)+λD(y | Y t−1). In the following subsections, we describe the relevance and diversity terms
in detail, and show how upper bounds can be efficiently computed over the sets of windows.
3.2 Relevance Function and Upper Bound
The goal of the relevance function R(Y ) is to quantify the “quality” or “relevance” of the windows
chosen in Y . In our work, we define R(Y ) to be a modular function aggregating the quality of
all chosen windows i.e. R(Y ) =

∑
y∈Y r(y). Thus, the marginal gain of window y is simply its

individual quality regardless of what else has already been chosen, i.e. R(y | Y t−1) = r(y).
In our application of object proposal generation, we use the objectness score produced by Edge-
Boxes [41] as our relevance function. The main intuition of EdgeBoxes is that the number of
contours or “edge groups” wholly contained in a box is indicative of its objectness score. Thus,
it first creates a grouping of edge pixels called edge groups, each associated with a real-valued edge
strength si.
Abstracting away some of the domain-specific details, EdgeBoxes essentially defines the score of a
box as a weighted sum of the strengths of edge groups contained in it, normalized by the size of the
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box i.e. EdgeBoxesScore(y) =

∑
edge group i∈y wisi

size-normalization
, where with a slight abuse of notation, we use

‘edge group i ∈ y’ to mean the edge groups contained the rectangle y.
These weights and size normalizations were found to improve performance of EdgeBoxes. In our
work, we use a simplification of the EdgeBoxesScore which allow for easy computation of upper
bounds:

r(y) =

∑
edge group i∈y si

size-normalization
, (3)

i.e., we ignore the weights. One simple upper-bound for a set of windows Yv can be computed by
accumulating all possible positive scores and the least necessary negative scores:

max
y∈Yv

r(y) ≤
∑

edge group i∈ymax
si · [[si ≥ 0]] +

∑
edge group i∈ymin

si · [[si ≤ 0]]

size-normalization(ymin)
, (4)

where ymax is the largest and ymin is the smallest box in the set Yv; and [[·]] is the Iverson bracket.
Consistent with the experiments in [41] , we found that this simplification indeed hurts performance
in the EdgeBoxes Sliding Window + NMS pipeline. However, interestingly we found that even
with this weaker relevance term, SubmodBoxes was able to outperform EdgeBoxes. Thus, the drop
in performance due to a weaker relevance term was more than compensated for by the ability to
perform B&B jointly on the relevance and diversity terms.

3.3 Diversity Function and Upper Bound
The goal of the diversity function D(Y ) is to encourage non-redundancy in the chosen set of win-
dows and potentially capture different objects in the image. Before we introduce our own diversity
function, we show how existing heuristics in object detection and proposal generation can be written
as special cases of this formulation, under specific diversity functions.
Sliding Window + NMS. Non-Maximal Suppression (NMS) is the most popular heuristic for select-
ing diverse boxes in computer vision. NMS is typically explained procedurally – select the highest
scoring window y1, suppress all windows that overlap with y1 by more than some threshold, select
the next highest scoring window y2, rinse and repeat.
This procedure can be explained as a special case of our formulation. Sliding Window corresponds
to enumeration over Y with some level of sub-sampling (or stride), typically with a fixed aspect
ratio. Each step in NMS is precisely a greedy augmentation step under the following marginal gain:

argmax
y∈Ysub-sampled

r(y) + λDNMS(y | Y t−1), where (5a)

DNMS(y | Y t−1) =

{
0 if maxy′∈Y t−1 IoU(y′,y) ≤ NMS-threshold
−∞ else.

(5b)

Intuitively, the NMS diversity function imposes an infinite penalty if a new window y overlaps
with a previously chosen y′ by more than a threshold, and offers no reward for diversity beyond
that. This explains the NMS procedure of suppressing overlapping windows and picking the highest
scoring one among the unsuppressed ones. Notice that this diversity function is submodular but not
monotone (the marginals gains may be negative). A similar observation was made in [3]. For such
non-monotone functions, greedy does not have approximation guarantees and different techniques
are needed [5, 15]. This is an interesting perspective on the classical NMS heuristic.
ESS Heuristic [26]. ESS was originally proposed for single-instance object detection. Their ex-
tension to detecting multiple instances consisted of a heuristic for suppressing the features extracted
from the selected bounding box and re-running the procedure. Since their scoring function was lin-
ear in the features, this heuristic of suppressing features and rerunning B&B can be expressed as a
greedy augmentation step under the following marginal gain:
argmax

y∈Y
r(y) + λDESS(y | Y t−1), whereDESS(y | Y t−1) = −r

(
y ∩ (y1 ∪ y2 . . .yt−1)

)
(6)

i.e., the ESS diversity function subtracts the score contribution coming from the intersection region.
If the r(·) is non-negative, it is easy to see that this diversity function is monotone and submodular
– adding a new window never hurts, and since the marginal gain is the score contribution of the new
regions not covered by previous window, it is naturally diminishing. Thus, even though this heuristic
not was presented as such, the authors of [26] did in fact formulate a near-optimal greedy algorithm
for maximizing a monotone submodular function. Unfortunately, while r(·) is always positive in
our experiments, this was not the case in the experimental setup of [26].
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Our Diversity Function. Instead of hand-designing an explicit diversity function, we use a function
that implicitly measures diversity in terms of coverage of a set of reference set of bounding boxes
B. This reference set of boxes may be a uniform sub-sampling of the space of windows as done
in Sliding Window methods, or may itself be the output of another object proposal method such as
Selective Search [39]. Specifically, each greedy augmentation step under our formulation given by:
argmax

y∈Y
r(y) + λDcoverage(y | Y t−1), where Dcoverage(y | Y t−1) = max

b∈B
δIoU(y, b | Y t−1) (7a)

δIoU(y, b | Y t−1) = max{IoU(y, b)− max
y′∈Y t−1

IoU(y′, b), 0}. (7b)

Intuitively speaking, the marginal gain of a new window y under our diversity function is the largest
gain in coverage of exactly one of the references boxes. We can also formulate this diversity function
as a maximum bipartite matching problem between the reference proposal boxes Y and the reference
boxes B (in our experiments, we also study performance under top-k matches). We show in the
supplement that this marginal gain is always non-negative and decreasing with larger Y t−1, thus the
diversity function is monotone submodular. All that remains is to compute an upper-bound on this
marginal gain. Ignoring constants, the key term to bound is IoU(y, b). We can upper-bound this
term by computing the intersection w.r.t. the largest window in the window set ymax, and computing
the union w.r.t. to the smallest window ymin, i.e. maxy∈Yv

IoU(y, b) ≤ area(ymax∩b)
area(ymin∪b) .

4 Speeding up Greedy with Minoux’s ‘Lazy Greedy’
In order to speed up repeated application of B&B across iterations of the greedy algorithm, we now
present an application of Minoux’s ‘lazy greedy’ algorithm [29] to the B&B tree.
The key insight of classical lazy greedy is that the marginal gain function F (y | Y t) is a non-
increasing function of t (due to submodularity of F ). Thus, at time t− 1, we can cache the priority
queue of marginals gains F (y | Y t−2) for all items. At time t, lazy greedy does not recompute
all marginal gains. Rather, the item at the front of the priority queue is picked, its marginal gain is
updated F (y | Y t−1), and the item is reinserted into the queue. Crucially, if the item remains at
the front of the priority queue, lazy greedy can stop, and we have found the item with the largest
marginal gain.
Interleaving Lazy Greedy with B&B. In our work, the priority queue does not contain single items,
rather sets of windows Yv corresponding to the vertices in the B&B tree. Thus, we must interleave
the lazy updates with the Branch-and-Bound steps. Specifically, we pick a set from the front of
the queue and compute the upper-bound on its marginal gain. We reinsert this set into the priority
queue. Once a set remains at the front of the priority queue after reinsertion, we have found the set
with the highest upper-bound. This is when perform a B&B step, i.e. split this set into two children,
compute the upper-bounds on the children, and insert them into the queue.

Figure 3: Interleaving Lazy Greedy with B&B. The first few steps update upper-bounds, following by finally
branching on a set. Some sets, such as v2 are never updated or split, resulting in a speed-up.

Fig. 3 illustrates how the priority queue and B&B tree are updated in this process. Suppose at the
end of iteration t − 1 and the beginning of iteration t, we have the priority queue shown on the
left. The first few updates involve recomputing the upper-bounds on the window sets (v6, v5, v3),
following by branching on v3 because it continues to stay on top of the queue, creating new vertices
v7, v8. Notice that v2 is never explored (updated or split), resulting in a speed-up.

5 Experiments
Setup. We evaluate SubmodBoxes for object proposal generation on three datasets: PASCAL VOC
2007 [13], PASCAL VOC 2012 [14], and MS COCO [28]. The goal of experiments is to validate our
approach by testing the accuracy of generated object proposals and the ability of handling different
kinds of reference boxes, and observe trends as we vary multiple parameters.
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Figure 4: ABO vs. No. Proposals.

Evaluation. To evaluate the quality of our object proposals, we use Mean Average Best Overlap
(MABO) score. Given a set of ground-truth boxes GTc for a class c, ABO is calculated by averaging
the best IoU between each ground truth bounding box and all object proposals:

ABOc =
1

|GTc|
∑

g∈GTc

max
y∈Y

IoU(g,y) (8)

MABO is a mean ABO over all classes.
Weighing the Reference Boxes. Recall that the marginal gain of our proposed diversity function
rewards covering the reference boxes with the chosen set of boxes. Instead of weighing all reference
boxes equally, we found it important to weigh different reference boxes differently. The exact form
the weighting rule is provided in the supplement. In our experiments, we present results with and
without such a weighting to show impact of our proposed scheme.
5.1 Accuracy of Object Proposals
In this section, we explore the performance of our proposed method in comparison to relevant object
proposal generators. For the two PASCAL datasets, we perform cross validation on 2510 validation
images of PASCAL VOC 2007 for the best parameter λ, then report accuracies on 4952 test images
of PASCAL VOC 2007 and 5823 validation images of PASCAL VOC 2012. The MS COCO dataset
is much larger, so we randomly select a subset of 5000 training images for tuning λ, and test on
complete validation dataset with 40138 images.
We use 1000 top ranked selective search windows [39] as reference boxes. In a manner similar
to [23], we chose a different λM for M = 100, 200, 400, 600, 800, 1000 proposals. We compare our
approach with several baselines: 1) λ = ∞, which essentially involves re-ranking selective search
windows by considering their ability to coverage other boxes. 2) Three variants of EdgeBoxes [41]
at IoU = 0.5, 0.7 and 0.9, and corresponding three variants without affinities in (3). 3) Selective
Search: compute multiple hierarchical segments via grouping superpixels and placing bounding
boxes around them. 4) SS-EB: use EdgeBoxesScore to re-rank Selective Search windows.
Fig. 4 shows that our approach at λ = ∞ and validation-tuned λ both outperform all baselines.
At M = 25, 100, and 500, our approach is 20%, 11%, and 3% better than Selective Search and
14%, 10%, and 6% better than EdgeBoxes70, respectively.
5.2 Ablation Studies.
We now study the performance of our system under different components and parameter settings.
Effect of λ and Reference Boxes. We test performance of our approach as a function of λ using
reference boxes from different object proposal generators (all reported at M=200 on PASCAL VOC
2012). Our reference box generators are: 1) Selective Search [39]; 2) MCG [2]; 3) CPMC [7]; 4)
EdgeBoxes [41] at IoU = 0.7; 5) Objectness [1]; and 6) Uniform-sampling [20]: i.e. uniformly
sample the bounding box center position, square root area and log aspect ratio.
Table 1 shows the performance of SubmodBoxes when used with these different reference box
generators. Our approach shows improvement (over corresponding method) for all reference boxes.
Our approach outperforms the current state of art MCG by 2% and Selective Search by 5%. This is
significantly larger than previous improvements reported in the literature.
Fig. 5a shows more fine-grained behavior as λ is varied. At λ = 0 all methods produce the same
(highest weighted) box M times. At λ = ∞, they all perform a reranking of the reference set of
boxes. In nearly all curves, there is a peak at some intermediate setting of λ. The only exception is
EdgeBoxes, which is expected since it is being used in both the relevance and diversity terms.
Effect of No. B&B Steps. We analyze the convergence trends of B&B. Fig. 5b shows that both the
optimization objective function value and the mABO increase with the number of B&B iterations.
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Selective-Search MCG EB CPMC Objectness Uniform-sampling

λ ≈ 0.4, weighting 0.7342 0.7377 0.6747 0.7125 0.6131 0.5937
λ ≈ 0.4, without weighting 0.5697 0.5042 0.6350 0.5681 0.6220 0.5136
λ = 10, weighting 0.7233 0.7417 0.6467 0.7130 0.5006 0.5478
λ = 10, without weighting 0.5844 0.5534 0.6232 0.5849 0.5920 0.5115
λ =∞, weighting 0.7222 0.7409 0.6558 0.7116 0.4980 0.5453
Original method 0.6817 0.7206 0.6755 0.7032 0.6038 0.5295
Table 1: Comparison with/without weighting scheme (rows) with different reference boxes (columns). ‘Orig-
inal method’ row shows performance of directly using object proposals from these proposal generators. ‘≈’
means we report the best performance from λ = 0.3, 0.4 and 0.5 considering the peak occurs at different λ for
different object proposal generators.

0 0.5 1 1.5 2

0.55

0.6

0.65

0.7

m
A

B
O

λ

 

 

SS

Objectness

EB

MCG

Uniform

CPMC

(a) Performance vs. λ with differ-
ent reference box generators.

1000 2000 5000 10000250

265

280

295

310

No.Iterations

O
bj

ec
tiv

e 
va

lu
es

1000 2000 5000 10000 0.55

0.6

0.65

0.7

m
AB

O

(b) Objective and performance vs.
No. of iterations.

0 5 10 15 20
0.69

0.7

0.71

No.Matching boxes

m
A

B
O

(c) Performance vs. No. of
matching boxes.

Figure 5: Experiments on different parameter settings.

Effect of No. of Matching Boxes. Instead of allowing the chosen boxes to cover exactly one ref-
erence box, we analyze the effect of matching top-k reference boxes. Fig. 5c shows that the perfor-
mance decreases monotonically bit as more matches are allowed.
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Figure 6: Comparison of the
number of B&B iterations of our
Lazy Greedy generalization and
independent B&B runs.

Speed up via Lazy Greedy. Fig. 6 compares the number of B&B
iterations required with and without our proposed Lazy Greedy gen-
eralization (averaged over 100 randomly chosen images) – we can
see that Lazy Greedy significantly reduces the number of B&B
iterations required. The cost of each B&B evaluation is nearly
the same, so the iteration speed-up is directly proportional to time
speed-up.
6 Conclusions
To summarize, we formally studied the search for a set of diverse
bounding boxes as an optimization problem and provided theoret-
ical justification for greedy and heuristic approaches used in prior
work. The key challenge of this problem is the large search space.
Thus, we proposed a generalization of Minoux’s ‘lazy greedy’ on
B&B tree to speed up classical greedy. We tested our formulation
on three datasets of object detection: PASCAL VOC 2007, PAS-

CAL 2012 and Microsoft COCO. Results show that our formulation outperforms all baselines with
a novel diversity measure.
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