NIPS Proceedingsβ

Convolutional Neural Networks with Intra-Layer Recurrent Connections for Scene Labeling

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Scene labeling is a challenging computer vision task. It requires the use of both local discriminative features and global context information. We adopt a deep recurrent convolutional neural network (RCNN) for this task, which is originally proposed for object recognition. Different from traditional convolutional neural networks (CNN), this model has intra-layer recurrent connections in the convolutional layers. Therefore each convolutional layer becomes a two-dimensional recurrent neural network. The units receive constant feed-forward inputs from the previous layer and recurrent inputs from their neighborhoods. While recurrent iterations proceed, the region of context captured by each unit expands. In this way, feature extraction and context modulation are seamlessly integrated, which is different from typical methods that entail separate modules for the two steps. To further utilize the context, a multi-scale RCNN is proposed. Over two benchmark datasets, Standford Background and Sift Flow, the model outperforms many state-of-the-art models in accuracy and efficiency.