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Abstract

Locally weighted regression (LWR) was created as a nonparametric method that
can approximate a wide range of functions, is computationally efficient, and can
learn continually from very large amounts of incrementally collected data. As
an interesting feature, LWR can regress on non-stationary functions, a beneficial
property, for instance, in control problems. However, it does not provide a proper
generative model for function values, and existing algorithms have a variety of
manual tuning parameters that strongly influence bias, variance and learning speed
of the results. Gaussian (process) regression, on the other hand, does provide
a generative model with rather black-box automatic parameter tuning, but it has
higher computational cost, especially for big data sets and if a non-stationary model
is required. In this paper, we suggest a path from Gaussian (process) regression to
locally weighted regression, where we retain the best of both approaches. Using
a localizing function basis and approximate inference techniques, we build a
Gaussian (process) regression algorithm of increasingly local nature and similar
computational complexity to LWR. Empirical evaluations are performed on several
synthetic and real robot datasets of increasing complexity and (big) data scale, and
demonstrate that we consistently achieve on par or superior performance compared
to current state-of-the-art methods while retaining a principled approach to fast
incremental regression with minimal manual tuning parameters.

1 Introduction

Besides accuracy and sample efficiency, computational cost is a crucial design criterion for machine
learning algorithms in real-time settings, such as control problems. An example is the modeling of
robot dynamics: The sensors in a robot can produce thousands of data points per second, quickly
amassing a coverage of the task related workspace, but what really matters is that the learning
algorithm incorporates this data in real time, as a physical system can not necessarily stop and
wait in its control – e.g., a biped would simply fall over. Thus, a learning method in such settings
should produce a good local model in fractions of a second, and be able to extend this model as the
robot explores new areas of a very high dimensional workspace that can often not be anticipated
by collecting “representative” training data. Ideally, it should rapidly produce a good (local) model
from a large number N of data points by adjusting a small number M of parameters. In robotics,
local learning approaches such as locally weighted regression [1] have thus been favored over global
approaches such as Gaussian process regression [2] in the past.

Local regression models approximate the function in the neighborhood of a query point x∗. Each
local model’s region of validity is defined by a kernel. Learning the shape of that kernel [3] is the
key component of locally weighted learning. Schaal & Atkeson [4] introduced a non-memory-based
version of LWR to compress large amounts of data into a small number of parameters. Instead
of keeping data in memory and constructing local models around query points on demand, their
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algorithm incrementally compresses data into M local models, where M grows automatically to
cover the experienced input space of the data. Each local model can have its own distance metric,
allowing local adaptation to local characteristics like curvature or noise. Furthermore, each local
model is trained independently, yielding a highly efficient parallelizable algorithm. Both its local
adaptiveness and its low computation cost (linear, O(NM)) has made LWR feasible and successful
in control learning. The downside is that LWR requires several tuning parameters, whose optimal
values can be highly data dependent. This is at least partly a result of the strongly localized training,
which does not allow models to ‘coordinate’, or to benefit from other local models in their vicinity.

Gaussian process regression (GPR) [2], on the other hand, offers principled inference for hyperpa-
rameters, but at high computational cost. Recent progress in sparsifying Gaussian processes [5, 6]
has resulted in computationally efficient variants of GPR . Sparsification is achieved either through a
subset selection of support points [7, 8] or through sparsification of the spectrum of the GP [9, 10].
Online versions of such sparse GPs [11, 12, 13] have produced a viable alternative for real-time
model learning problems [14]. However, these sparse approaches typically learn one global distance
metric, making it difficult to fit the non-stationary data encountered in robotics. Moreover, restricting
the resources in a GP also restricts the function space that can be covered, such that with the need to
cover a growing workspace, the accuracy of learning with naturally diminish.

Here we develop a probabilistic alternative to LWR that, like GPR, has a global generative model, but
is locally adaptive and retains LWRs fast incremental training. We start in the batch setting, where
rethinking LWRs localization strategy results in a loss function coupling local models that can be
modeled within the Gaussian regression framework (Section 2). Modifying and approximating the
global model, we arrive at a localized batch learning procedure (Section 3), which we term Local
Gaussian Regression (LGR). Finally, we develop an incremental version of LGR that processes
streaming data (Section 4). Previous probabilistic formulations of local regression [15, 16, 17] are
bottom-up constructions—generative models for one local model at a time. Ours is a top-down
approach, approximating a global model to give a localized regression algorithm similar to LWR.

2 Background

Locally weighted regression (LWR) with a fixed set of M local models minimizes the loss function

L(w) =

N

∑

n=1

M

∑

m=1
ηm(xn)(yn − ξm(xn)

Twm)
2
=

M

∑

m=1
L(wm). (1)

The right hand side decomposes L(w) into independent losses for M models. We assume each
model has K local feature functions ξmk(x), so that the m-th model’s prediction at x is

fm(x) =
K

∑

k=1
ξmk(x)wmk = ξm(x)⊺wm (2)

K = 2, ξm1(x) = 1, ξm2(x) = (x − cm) gives a linear model around cm. Higher polynomials can be
used, too, but linear models have a favorable bias-variance trade-off [18]. The models are localized
by a non-negative, symmetric and integrable weighting ηm(x), typically the radial basis function

ηm(x) = exp [−

(x − cm)
2

2λ2m
] , or ηm(x) = exp [−

1

2
(x − cm)Λ−1

m (x − cm)
⊺
] (3)

for x ∈ RD, with center cm and length scale λm or positive definite metric Λm. ηm(xn) localizes the
effect of errors on the least-squares estimate of wm—data points far away from cm have little effect.
The prediction y∗ at a test point x∗ is a normalized weighted average of the local predictions y∗,m:

y∗ =
∑
M
m=1 ηm(x∗)fm(x∗)

∑
M
m=1 ηm(x∗)

(4)

LWR effectively trains M linear models on M separate datasets ym(xn) =
√

ηm(xn)yn. These
models differ from the one of Eq. (4), used at test time. This smoothes discontinuous transitions
between models, but also means that LWR can not be cast probabilistically as one generative model
for training and test data simultaneously. (This holds for any bottom-up construction that learns local
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Figure 1: Left: Bayesian linear regression with M feature functions φn
m = φm(xn) = η

n
mξ

n
m, where ηnm can

be a function localizing the effect of the mth input function ξnm towards the prediction of yn. Right: Latent
variables fn

m placed between the features and yn decouple the M regression parameters wm and effectively
create M local models connected only through the latent fn

m.

models independently and combines them as above, e.g., [15, 16]). The independence of local models
is key to LWR’s training: changing one local model does not affect the others. While this lowers cost,
we believe it is also partially responsible for LWR’s sensitivity to manually tuned parameters.

Here, we investigate a different strategy to achieve localization, aiming to retain the computational
complexity of LWR, while adding a sense of globality. Instead of using ηm to localize the training
error of data points, we localize a model’s contribution ŷm = ξ(x)Twm towards the global fit of
training point y, similar to how LWR operates during test time (Eq.4). Thus, already during training,
local models must collaborate to fit a data point ŷ = ∑m=1 ηm(x)ξ(x)Twm. Our loss function is

L(w) =

N

∑

n=1
(yn −

M

∑

m=1
ηm(xn)ξm(xn)

Twm)

2

=

N

∑

n=1
(yn −

M

∑

m=1
φm(xn)

Twm)

2

, (5)

combining the localizer ηm(xn) and the mth input function ξm(xn) to form the feature φm(xn) =
ηm(xn)ξm(xn). This form of localization couples all local models, as in classical radial basis
function networks [19]. At test time, all local predictions form a joined prediction

y∗ =
M

∑

m=1
y∗m =

M

∑

m=1
φm(x∗)Twm (6)

This loss can be minimized through a regularized least-square estimator forw (the concatenation of all
wm). We follow the probabilistic interpretation of least-squares estimation as inference on the weights
w, from a Gaussian prior p(w) = N(w;µ0,Σ0) and likelihood p(y ∣φ,w) = N(y;φ⊺w, β−1y I).
The probabilistic formulation has additional value as a generative model for all (training and test)
data points y, which can be used to learn hyperparameters (Figure 1, left). The posterior is

p(w ∣y,φ) = N (w;µN ,ΣN) with (7)

µN = (Σ−1
0 + βyΦ⊺Φ)

−1
(βyΦ⊺y −Σ−1

0 µ0) and ΣN = (Σ−1
0 + βyΦ⊺Φ)

−1 (8)

(Heteroscedastic data will be addressed below). The prediction for f(x∗) with features φ(x∗) =∶ φ∗
is also Gaussian, with p(f(x∗) ∣y,φ) = N(f(x∗);φ∗µN ,φ∗ΣNφ

⊺
∗). As is widely known,

this framework can be extended nonparametrically by a limit that replaces all inner products
φ(xi)Σ0φ(xj)

⊺ with a Mercer (positive semi-definite) kernel k(xi,xj), corresponding to a Gaus-
sian process prior. The direct connection between Gaussian regression and the elegant theory of
Gaussian processes is a conceptual strength. The main downside, relative to LWR, is computational
cost: Calculating the posterior (7) requires solving the least-squares problem for all F parameters w
jointly, by inverting the Gram matrix (Σ−1

0 + βyΦ⊺Φ). In general, this requires O(F 3
) operations.

Below we propose approximations to lower the computational cost of this operation to a level compa-
rable to LWR, while retaining the probabilistic interpretation, and the modeling robustness of the full
Gaussian model.

3 Local Parametric Gaussian Regression

The above shows that Gaussian regression with features φm(x) = ηm(x)ξm(x) can be interpreted
as global regression with M models, where ηm(xn) localizes the contribution of the model ξm(x)
towards the joint prediction of yn. The choice of local parametric model ξm is essentially free. Local
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linear regression in a K-dimensional input space takes the form ξm(xn) = xn − cm, and can be
viewed as the analog of locally weighted linear regression. Locally constant models ξm(x) = 1
correspond to Gaussian regression with RBF features. Generalizing to M local models with K
parameters each, feature function φnmk combines the kth component of the local model ξkm(xn),
localized by the m-th weighting function ηm(xn)

φnmk ∶= φmk(xn) = ηm(xn)ξkm(xn). (9)

Treating mk as indices of a vector ∈ RMK , Equation (7) gives localized linear Gaussian regression.
Since it will become necessary to prune the model, we adopt the classic idea of automatic relevance
determination [20, 21] using a factorizing prior

p(w∣A) =

M

∏

m=1
N(wm; 0,A−1

m ) with Am = diag(αm1, . . . , αmK). (10)

Thus every component k of local model m has its own precision, and can be pruned out by setting
αmk_∞. Section 3.1 assumes a fixed number M of local models with fixed centers cm. The
parameters are θ = {βy,{αmk},{λmd}}, where K is the dimension of local model ξ(x) and D is
the dimension of input x. We propose an approximation for estimating θ. Section 4 then describes
an incremental algorithm allocating local models as needed, adapting M and cm.

3.1 Learning in Local Gaussian Regression

Exact Gaussian regression with localized features still has cubic cost. However, because of the
localization, correlation between distant local models approximately vanishes, and inference is
approximately independent between local models. To use this near-independence for cheap local
approximate inference, similar to LWR, we introduce a latent variable fnm for each local model m
and datum xn, as in probabilistic backfitting [22]. Intuitively, the f form approximate local targets,
against which the local parameters fit (Figure 1, right). Moreover, as formalized below, each fnm has
its own variance parameter, which re-introduces the ability to model hetereoscedastic data.

This modified model motivates a factorizing variational bound (Section 3.1.1). Rendering the local
models computationally independent, it allows for fast approximate inference in the local Gaussian
model. Hyperparameters can be learned by approximate maximum likelihood (Section 3.1.2),
i.e. iterating between constructing a bound q(z ∣θ) on the posterior over hidden variables z (defined
below) given current parameter estimates θ and optimizing q with respect to θ.

3.1.1 Variational Bound

The complete data likelihood of the modified model (Figure 1, right) is

p(y,f ,w ∣Φ, θ) =
N

∏

n=1
N(yn;fn, βy)

N

∏

n=1

M

∏

m=1
N(fnm;φnmwm, βfm)

M

∏

m=1
N(wm; 0,Am) (11)

Our Gaussian model involves the latent variablesw and f , the precisions β = {βy, βf1, . . . , βfM} and
the model parameters λm,cm. We treatw and f as probabilistic variables and estimate θ = {β,λ,c}.
On w,f , we construct a variational bound q(w,f) imposing factorization q(w,f) = q(w)q(f).
The variational free energy is a lower bound on the log evidence for the observations y:

log p(y ∣ θ) ≥ ∫ q(w,f) log
p(y,w,f ∣ θ)

q(w,f)
. (12)

This bound is maximized by the q(w,f) minimizing the relative entropy
DKL[q(w,f)∥p(w,f ∣y, θ)], the distribution for which log q(w) = Ef [log p(y ∣f ,w)p(w,f)]
and log q(f) = Ew[log p(y ∣f ,w)p(w,f)]. It is relatively easy to show (e.g. [23]) that these
distributions are Gaussian in both w and f .The approximation on w is

log q(w) = Ef [

N

∑

n=1
log p(fn ∣φn,w) + log p(w ∣A)] = log

M

∏

m=1
N(wm;µwm ,Σwm) (13)

where

Σwm = (βfm
N

∑

n=1
φnmφ

n
m
T
+Am)

−1
∈ RK×K and µwm = βfmΣwm (

N

∑

n=1
φnmE [fnm]) ∈ RK×1

(14)

4



The posterior update equations for the weights are local: each of the local models updates its
parameters independently. This comes at the cost of having to update the belief over the variables fnm,
which achieves a coupling between the local models. The Gaussian variational bound on f is

log q(fn) = Ew [log p(yn ∣fn, βy) + log p(fn ∣φnm,w)] = N(fn;µfn,Σf), (15)

where

Σf = B
−1
−B−11(β−1y + 1TB−11)−11TB−1

= B−1
−

B−111TB−1

β−1y + 1TB−11
(16)

µfnm = Ew [wm]
T
φnm

β−1fm
β−1y +∑

M
m=1 β−1fm

(yn −
M

∑

m=1
Ew [wm]

T
φnm) (17)

and B = diag (βf1, . . . , βfM). µfnm is the posterior mean of the m-th model’s virtual target for data
point n. These updates can be performed in O(MK). Note how the posterior over hidden variables
f couples the local models, allowing for a form of message passing between local models.

3.1.2 Optimizing Hyperparameters

To set the parameters θ = {βy,{βfm, λm}
M
m=1,{αmk}}, we maximize the expected complete log

likelihood under the variational bound

Ef ,w[log p(y,f ,w ∣Φ, θ)] = Ef ,w{

N

∑

n=1
[ logN (yn;

M

∑

m=1
fnm, β

−1
y )

+

M

∑

m=1
logN(fnm;wT

mφ
n
m, β

−1
fm)] +

M

∑

m=1
logN(wm; 0,A−1

m )}. (18)

Setting the gradient of this expression to zero leads to the following update equations for the variances

β−1y =

1

N

N

∑

n=1
(yn − 1µfn)

2
+ 1TΣf1 (19)

β−1fm =

1

N

N

∑

n=1
[(µfnm −µwmφ

n
m)

2
+φnm

T
Σwmφ

n
m] + σ2

fm (20)

α−1mk = µ
2
wmk

+Σw,kk (21)

The gradient with respect to the scales of each local model is completely localized

∂Ef ,w [log p(y,f ,w ∣Φ, θ)]

∂λmd
=

∂Ef ,w [∑
N
n=1N(fnm;wT

mφ
n
m, β

−1
fm)]

∂λmd
(22)

We use gradient ascent to optimize the length scales λmd. All necessary equations are of low cost
and, with the exception of the variance 1/βy, all hyper-parameter updates are solved independently
for each local model, similar to LWR. In contrast to LWR, however, these local updates do not
cause a potential catastrophic shrinking in the length scales: In LWR, both inputs and outputs are
weighted by the localizing function, thus reducing the length scale improves the fit. The localization
in Equation (22) only affects the influence of regression model m, but the targets still need to be
fit accordingly. Shrinking of local models only happens if it actually improves the fit against the
unweighted targets fnm such that no complex cross validation procedures are required.

3.1.3 Prediction

Predictions at a test point x∗ arise from marginalizing over both f and w, using

∫ [∫ N(y∗;1Tf∗, β
−1
y )N(f∗;WTφ(x∗),B−1

)df∗] N(w;µw,Σw)dw

= N (y∗;∑
m

wT
mφ

∗
m, σ

2
(x∗)) (23)

where σ2
(x∗) = β−1y +∑

M
m=1 β

−1
fm +∑

M
m=1φ

∗
m
T

Σwmφ
∗
m, which is linear in M and K.
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4 Incremental Local Gaussian Regression

The above approximate posterior updates apply in the batch setting, assuming the number M and
locations c of local models are fixed. This section constructs an online algorithm for incrementally
incoming data, creating new local models when needed. There has been recent interest in variational
online algorithms for efficient learning on large data sets [24, 25]. Stochastic variational inference
[24] operates under the assumption that the data set has a fixed size N and optimizes the variational
lower bound for N data points via stochastic gradient descent. Here, we follow algorithms for
streaming datasets of unknown size. Probabilistic methods in this setting typically follow a Bayesian
filtering approach [26, 25, 27] in which the posterior after n − 1 data points becomes the prior for
the n-th incoming data point. Following this principle we extend the model presented in Section 3
and treat precision variables {βfm, αmk} as random variables, assuming Gamma priors p(βfm) =

G(βfm ∣aβ0 , b
β
0 ) and p(αm) = ∏

K
k=1 G(αmk ∣a

α
0 , b

α
0 ). Thus, the factorized approximation on the

posterior q(z) over all random variables z = {f ,w,α,βf} is changed to

q(z) = q(f ,w,βf ,α) = q(f)q(w)q(βf)q(α) (24)
A batch version of this was introduced in [28]. Given that, the recursive application of Bayes’ theorem
results in the approximate posterior

p(z∣x1, . . . ,xn) ≈ p(xn ∣z)q(z ∣x1, . . .xn−1) (25)
after n data points. In essence, this formulates the (approximate) posterior updates in terms
of sufficient statistics, which are updated with each new incoming data point. The batch up-
dates (listed in [28]) can be rewritten such that they depend on the following sufficient statistics
∑
N
n=1φ

n
mφ

n
m
⊺
,∑n=1φ

n
mµ

n
fm and ∑n=1(µnfm)

2. Although the length-scales λm could be treated as
random variables too, here we update them using the noisy (stochastic) gradients produced by each
incoming data point. Due to space limitations, we only summarize these update equations in the
algorithm below, where we have replaced the expectation operator by ⟨⋅⟩.

Finally, we use an extension analogous to incremental training of the relevance vector machine [29] to
iteratively add local models at new, greedily selected locations cM+1. Starting with one local model,
each iteration adds one local model in the variational step, and prunes out existing local models
for which all components αmk_∞. This works well in practice, with the caveat that the model
number M can grow fast initially, before the pruning becomes effective. Thus, we check for each
selected location cM+1 whether any of the existing local models c1∶M produces a localizing weight
ηm(cM+1) ≥ wgen, where wgen is a parameter between 0 and 1 and regulates how many parameters
are added. Algorithm 1 gives an overview of the entire incremental algorithm.

Algorithm 1 Incremental LGR

1: M = 0;C = {}, aα0 , b
α
0 , a

β
0 , β

β
0 , forgetting rate κ, learning rate ν

2: for all (xn, yn) do // for each data point
3: if ηm(xn) < wgen,∀m = 1, . . . ,M then cm^xn; C^C ∪ {cm}; M =M + 1 end if

4: Σf = B
−1
−

B−111TB−1

β−1y +∑m⟨β⟩fm , µfnm = µTwmφ
n
m

β−1fm
β−1y +∑Mm=1⟨β⟩−1fm

(yn −∑
M
m=1 µ

T
wmφ

n
m)

5: for m = 1 to M do
6: if ηm(xn) < 0.01 then continue end if
7: SφmφTm ^κSφmφ⊺m +φnmφ

n
m
⊺
, Sφmµfm ^κSφmµfm + φnmµfnm , Sµ2

fm
^κSµ2

fm
+ µ2

fnm

8: Σwm = (⟨β⟩fmSφmφTm + ⟨A⟩m)
−1
, µwm = ⟨β⟩fmΣwmSφmµfm

9: Nm = κNm + 1, aβNm = aβ0 +Nm, a
α
Nm = aα0 + 0.5

10: bβNm = Sµ2
fnm

− 2µ⊺wmSφmµfm + tr [Sφmφ⊺m(Σwm + µwmµ
⊺
wm)] +Nmσ

2
fm

11: bαNmk = µ
2
wm,k

+Σwm,kk

12: ⟨β⟩fm = a
β
Nm/b

β
Nm
, ⟨A⟩m = diag (a

α
Nmk/bαNmk)

13: λm = λm + ν(∂/∂λmN(⟨fn⟩m; ⟨w⟩
T
mφ

n
m, ⟨β⟩

−1
fm))

14: if ⟨α⟩mk > 1e3 ∀k = 1, . . . ,K then prune local model m, M ^M − 1 end if
15: end for
16: end for
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Table 1: Datasets for inverse dynamics tasks: KUKA1, KUKA2 are different splits of the same data. Rightmost
column indicates the overlap in input space coverage between offline (ISoffline) and online training (ISonline) sets.

Dataset freq Motion Noffline train Nonline train Ntest ISoffline ∪ ISonline

Sarcos [2] 100 rhythmic 4449 44484 - large overlap
KUKA1 500 rhythmic at various speeds 17560 180360 - small overlap
KUKA2 500 rhythmic at various speeds 17560 180360 - no overlap
KUKAsim 500 rhythmic + discrete - 1984950 20050 -

5 Experiments

We evaluate our LGR on inverse dynamics learning tasks, using data from two robotic platforms:
a SARCOS anthropomorphic arm and a KUKA lightweight arm. For both robots, learning the
inverse dynamics involves learning a map from the joint positions q (rad), velocities q̇ (rad/s) and
accelerations q̈ (rad/s2), to torques τ (Nm) for each of 7 joints (degrees of freedom). We compare to
two methods previously used for inverse dynamics learning: LWPR1 – an extension of LWR for high
dimensional spaces [31] – and I-SSGPR2 [13] – an incremental version of Sparse Spectrum GPR.
I-SSGPR differs from LGR and LWPR in that it is a global method and does not learn the distance
metric online. Instead, I-SSGPR needs offline training of hyperparameters before it can be used
online. We mimic the procedure used in [13]: An offline training set is used to learn an initial model
and hyperparameters, then an online training set is used to evaluate incremental learning. Where
indicated we use initial offline training for all three methods. I-SSGPR uses typical GPR optimization
procedures for offline training, and is thus only available in batch mode. For LGR, we use the batch
version for pre-training/hyperparameter learning. For all experiments we initialized the length scales
to λ = 0.3, and used wgen = 0.3 for both LWPR and LGR.

We evaluate on four different data sets, listed in Table 1. These sets vary in scale, types of motion
and how well the offline training set represents the data encountered during online learning. All
results were averaged over 5 randomly seeded runs, mean-squared error (MSE) and normalized
mean-squared error (nMSE) are reported on the online training dataset. The nMSE is reported as the
mean-squared error normalized by the variance of the outputs.

Table 2: Predictive performance on online training data of Sarcos after one sweep. I-SSGPR has been trained
with 200(400) features, MSE for 400 features is reported in brackets.

I-SSGPR200(400) LWPR LGR

Joint MSE nMSE MSE nMSE # of LM MSE nMSE # of LM

J1 13.699 (10.832) 0.033 19.180 0.046 461.4 11.434 0.027 321.4
J2 6.158 (4.788) 0.027 9.783 0.044 495.0 8.342 0.037 287.4
J3 1.803 (1.415) 0.018 3.595 0.036 464.6 2.237 0.023 298.0
J4 1.198 (0.857) 0.006 4.807 0.025 382.8 5.079 0.027 303.2
J5 0.034 (0.027) 0.036 0.071 0.075 431.2 0.031 0.033 344.2
J6 0.129 (0.096) 0.044 0.248 0.085 510.2 0.101 0.034 344.2
J7 0.093 (0.063) 0.014 0.231 0.034 378.8 0.170 0.025 348.8

Sarcos: Table 2 summarizes results on the popular Sarcos benchmark for inverse dynamics learning
tasks [2]. The traditional test set is used as the offline training data to pre-train all three models.
I-SSGPR is trained with 200 and 400 sparse spectrum features, indicated as I-SSGPR200(400), where
200 features is the optimal design choice according to [13]. We report the (normalized) mean-squared
error on the online training data, after one sweep through it - i.e. each data point has been used once -
has been performed. All three methods perform well on this data, with I-SSGPR and LGR having a
slight edge over LWPR in terms of accuracy; and LGR uses fewer local models than LWPR. The
Sarcos data offline training set represents the data encountered during online training very well. Thus,
here online distance metric learning is not necessary to achieve good performance.

1we use the LWPR implementation found in the SL simulation software package [30]
2we use code from the learningMachine library in the RobotCub framework, from http:// eris.liralab.it/iCub
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Table 3: Predictive performance on online training data of KUKA1 and KUKA2 after one sweep. KUKA2

results are averages across joints. I-SSGPR was trained on 200 and 400 features (results for I-SSGPR400 shown
in brackets).

I-SSGPR200(400) LWPR LGR

data Joint MSE nMSE MSE nMSE # of LM MSE nMSE # of LM

KUKA1

J1 7.021 (7.680) 0.233 2.362 0.078 3476.8 2.238 0.074 3188.6
J2 16.385 (18.492) 0.265 2.359 0.038 3508.6 2.738 0.044 3363.8
J3 1.872 (1.824) 0.289 0.457 0.071 3477.2 0.528 0.082 3246.6
J4 3.124 (3.460) 0.256 0.503 0.041 3494.6 0.571 0.047 3333.6
J5 0.095 (0.143) 0.196 0.019 0.039 3512.4 0.017 0.036 3184.4
J6 0.142 (0.296) 0.139 0.043 0.042 3561.0 0.029 0.029 3372.4
J7 0.129 (0.198) 0.174 0.023 0.031 3625.6 0.033 0.044 3232.6

KUKA2 - 9.740 (9.985) 0.507 1.064 0.056 3617.7 1.012 0.054 3290.2

5 ⋅ 105 1 ⋅ 106 1.5 ⋅ 106

0.02

0.04

0.06

n

nM
SE

LGR
LWPR

5 ⋅ 105 1 ⋅ 106 1.5 ⋅ 106

14,000

15,000

16,000

17,000

n

M

Figure 2: Right: nMSE on the first joint of simulated KUKA arm Left: average number of local models used.

KUKA1 and KUKA2: The two KUKA datasets consist of rhythmic motions at various speeds, and
represent a more realistic setting in robotics: While one can collect some data for offline training, it is
not feasible to cover the whole state-space. Offline data of KUKA1 has been chosen to give partial
coverage of the range of available speeds, while KUKA2 consists of motion at only one speed. In this
setting, both LWPR and LGR excel (Table 3). As they can learn local distance metrics on the fly, they
adapt to incoming data in previously unexplored input areas. Performance of I-SSGPR200 degrades
as the offline training data is less representative, while LGR and LWPR perform almost equally well
on KUKA1 and KUKA2. While there is little difference in accuracy between LGR and LWPR, LGR
consistently uses fewer local models and does not require careful manual meta-parameter tuning.
Since both LGR and LWPR use more local models on this data (compared to the Sarcos data) we
also tried increasing the feature space of I-SSGPR to 400 features. This did not improve I-SSGPRs
performance on the online data (see Table 3). Finally, it is noteworthy that LGR processes both of
these data sets at ∼ 500Hz (C++ code, on a 3.4GHz Intel Core i7), making it a realistic alternative for
real-time inverse dynamics learning tasks.

KUKAsim : Finally, we evaluate LGRs ability to learn from scratch on KUKAsim, a large data set
of 2 million simulated data points, collected using [30]. We randomly drew 1% points as a test
set, on which we evaluate convergence during online training. Figure 2 (left) shows convergence
and number of local models used, averaged over 5 randomly seeded runs for joint 1. After the first
1e5 data points, both LWPR and LGR achieve a normalized mean squared error below 0.07, and
eventually converge to a nMSE of ∼ 0.01. LGR converges slightly faster, while using fewer local
models (Figure 2, right).

6 Conclusion

We proposed a top-down approach to probabilistic localized regression. Local Gaussian Regression
decouples inference over M local models, resulting in efficient and principled updates for all
parameters, including local distance metrics. These localized updates can be used in batch as well as
incrementally, yielding computationally efficient learning in either case and applicability to big data
sets. Evaluated on a variety of simulated and real robotic inverse dynamics tasks, and compared to
I-SSGPR and LWPR, incremental LGR shows an ability to add resources (local models) and to update
its distance metrics online. This is essential to consistently achieve high accuracy. Compared to
LWPR, LGR matches or improves precision, while consistently using fewer resources (local models)
and having significantly fewer manual tuning parameters.
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