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Abstract

In this paper, we present a new approach for lifted MAP inference in Markov
logic networks (MLNs). The key idea in our approach is to compactly encode the
MAP inference problem as an Integer Polynomial Program (IPP) by schematically
applying three lifted inference steps to the MLN: lifted decomposition, lifted
conditioning, and partial grounding. Our IPP encoding is lifted in the sense that
an integer assignment to a variable in the IPP may represent a truth-assignment
to multiple indistinguishable ground atoms in the MLN. We show how to solve
the IPP by first converting it to an Integer Linear Program (ILP) and then solving
the latter using state-of-the-art ILP techniques. Experiments on several benchmark
MLNs show that our new algorithm is substantially superior to ground inference
and existing methods in terms of computational efficiency and solution quality.

1 Introduction

Many domains in AI and machine learning (e.g., NLP, vision, etc.) are characterized by rich relational
structure as well as uncertainty. Statistical relational learning (SRL) models [5] combine the power
of first-order logic with probabilistic graphical models to effectively handle both of these aspects.
Among a number of SRL representations that have been proposed to date, Markov logic [4] is
arguably the most popular one because of its simplicity; it compactly represents domain knowledge
using a set of weighted first order formulas and thus only minimally modifies first-order logic.

The key task over Markov logic networks (MLNs) is inference which is the means of answering
queries posed over the MLN. Although, one can reduce the problem of inference in MLNs to inference
in graphical models by propositionalizing or grounding the MLN (which yields a Markov network),
this approach is not scalable. The reason is that the resulting Markov network can be quite large,
having millions of variables and features. One approach to achieve scalability is lifted inference,
which operates on groups of indistinguishable random variables rather than on individual variables.
Lifted inference algorithms identify groups of indistinguishable atoms by looking for symmetries
in the first-order logic representation, grounding the MLN only as necessary. Naturally, when the
number of such groups is small, lifted inference is significantly better than propositional inference.

Starting with the work of Poole [17], researchers have invented a number of lifted inference algorithms.
At a high level, these algorithms “lift” existing probabilistic inference algorithms (cf. [3, 6, 7, 21, 22,
23, 24]). However, many of these lifted inference algorithms have focused on the task of marginal
inference, i.e., finding the marginal probability of a ground atom given evidence. For many problems
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of interest such as in vision and NLP, one is often interested in the MAP inference task, i.e., finding
the most likely assignment to all ground atoms given evidence. In recent years, there has been a
growing interest in lifted MAP inference. Notable lifted MAP approaches include exploiting uniform
assignments for lifted MPE [1], lifted variational inference using graph automorphism [2], lifted
likelihood-maximization for MAP [8], exploiting symmetry for MAP inference [15] and efficient
lifting of MAP LP relaxations using k-locality [13]. However, a key problem with most of the existing
lifted approaches is that they require significant modifications to be made to propositional inference
algorithms, and for optimal performance require lifting several steps of propositional algorithms. This
is time consuming because one has to lift decades of advances in propositional inference.

To circumvent this problem, recently Sarkhel et al. [18] advocated using the “lifting as pre-processing”
paradigm [20]. The key idea is to apply lifted inference as pre-processing step and construct a Markov
network that is lifted in the sense that its size can be much smaller than ground Markov network and
a complete assignment to its variables may represent several complete assignments in the ground
Markov network. Unfortunately, Sarkhel et al.’s approach does not use existing research on lifted
inference to the fullest extent and is efficient only when first-order formulas have no shared terms.

In this paper, we propose a novel lifted MAP inference approach which is also based on the “lifting as
pre-processing” paradigm but unlike Sarkhel et al.’s approach is at least as powerful as probabilistic
theorem proving [6], an advanced lifted inference algorithm. Moreover, our new approach can easily
subsume Sarkhel et al.’s approach by using it as just another lifted inference rule. The key idea in
our approach is to reduce the lifted MAP inference (maximization) problem to an equivalent Integer
Polynomial Program (IPP). Each variable in the IPP potentially refers to an assignment to a large
number of ground atoms in the original MLN. Hence, the size of search space of the generated IPP
can be significantly smaller than the ground Markov network.

Our algorithm to generate the IPP is based on the following three lifted inference operations which
incrementally build the polynomial objective function and its associated constraints: (1) Lifted
decomposition [6] finds sub-problems with identical structure and solves only one of them; (2) Lifted
conditioning [6] replaces an atom with only one logical variable (singleton atom) by a variable in the
integer polynomial program such that each of its values denotes the number of the true ground atoms
of the singleton atom in a solution; and (3) Partial grounding is used to simplify the MLN further so
that one of the above two operations can be applied.

To solve the IPP generated from the MLN we convert it to an equivalent zero-one Integer Linear
Program (ILP) using a classic conversion method outlined in [25]. A desirable characteristic of
our reduction is that we can use any off-the-shelf ILP solver to get exact or approximate solution
to the original problem. We used a parallel ILP solver, Gurobi [9] for this purpose. We evaluated
our approach on multiple benchmark MLNs and compared with Alchemy [11] and Tuffy [14], two
state-of-the-art MLN systems that perform MAP inference by grounding the MLN, as well as with
the lifted MAP inference approach of Sarkhel et al. [18]. Experimental results show that our approach
is superior to Alchemy, Tuffy and Sarkhel et al.’s approach in terms of scalability and accuracy.

2 Notation And Background

Propositional Logic. In propositional logic, sentences or formulas, denoted by f , are composed of
symbols called propositions or atoms, denoted by upper case letters (e.g., X , Y , Z, etc.) that are
joined by five logical operators ∧ (conjunction), ∨ (disjunction), ¬ (negation),⇒ (implication) and
⇔ (equivalence). Each atom takes values from the binary domain {true, false}.
First-order Logic. An atom in first-order logic (FOL) is a predicate that represents relations between
objects. A predicate consists of a predicate symbol, denoted by Monospace fonts (e.g., Friends, R,
etc.), followed by a parenthesized list of arguments. A term is a logical variable, denoted by lower
case letters such as x, y, and z, or a constant, denoted by upper case letters such as X , Y , and Z.
We assume that each logical variable, say x, is typed and takes values from a finite set of constants,
called its domain, denoted by ∆x. In addition to the logical operators, FOL includes universal ∀ and
existential ∃ quantifiers. Quantifiers express properties of an entire collection of objects. A formula in
first order logic is an atom, or any complex sentence that can be constructed from atoms using logical
operators and quantifiers. For example, the formula ∀x Smokes(x)⇒ Asthma(x) states that all
persons who smoke have asthma. A Knowledge base (KB) is a set of first-order formulas.
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In this paper we use a subset of FOL which has no function symbols, equality constraints or existential
quantifiers. We assume that formulas are standardized apart, namely no two formulas share a logical
variable. We also assume that domains are finite and there is a one-to-one mapping between constants
and objects in the domain (Herbrand interpretations). We assume that each formula f is of the form
∀xf , where x is the set of variables in f (also denoted by V (f)) and f is a disjunction of literals
(clause); each literal being an atom or its negation. For brevity, we will drop ∀ from all formulas.
A ground atom is an atom containing only constants. A ground formula is a formula obtained by
substituting all of its variables with a constant, namely a formula containing only ground atoms. A
ground KB is a KB containing all possible groundings of all of its formulas.

Markov Logic. Markov logic [4] extends FOL by softening hard constraints expressed by formulas
and is arguably the most popular modeling language for SRL. A soft formula or a weighted formula
is a pair (f, w) where f is a formula in FOL and w is a real-number. A Markov logic network (MLN),
denoted by M , is a set of weighted formulas (fi, wi). Given a set of constants that represent objects in
the domain, a Markov logic network represents a Markov network or a log-linear model. The ground
Markov network is obtained by grounding the weighted first-order knowledge base with one feature
for each grounding of each formula. The weight of the feature is the weight attached to the formula.
The ground network represents the probability distribution P (ω) = 1

Z exp (
∑

i wiN(fi, ω)) where
ω is a world, namely a truth-assignment to all ground atoms, N(fi, ω) is the number of groundings
of fi that evaluate to true given ω and Z is a normalization constant.

For simplicity, we will assume that the MLN is in normal form and has no self joins, namely no two
atoms in a formula have the same predicate symbol [10]. A normal MLN is an MLN that satisfies the
following two properties: (i) there are no constants in any formula; and (ii) If two distinct atoms of
predicate R have variables x and y as the same argument of R, then ∆x = ∆y. Because of the second
condition, in normal MLNs, we can associate domains with each argument of a predicate. Moreover,
for inference purposes, in normal MLNs, we do not have to keep track of the actual elements in
the domain of a variable, all we need to know is the size of the domain [10]. Let iR denote the i-th
argument of predicate R and let D(iR) denote the number of elements in the domain of iR. Henceforth,
we will abuse notation and refer to normal MLNs as MLNs.

MAP Inference in MLNs. A common optimization inference task over MLNs is finding the most
probable state of the world ω, that is finding a complete assignment to all ground atoms which
maximizes the probability. Formally,

arg max
ω

PM(ω) = arg max
ω

1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
= arg max

ω

∑
i

wiN(fi, ω) (1)

From Eq. (1), we can see that the MAP problem in Markov logic reduces to finding the truth assign-
ment that maximizes the sum of weights of satisfied clauses. Therefore, any weighted satisfiability
solver can used to solve this problem. The problem is NP-hard in general, but effective solvers exist,
both exact and approximate. Examples of such solvers are MaxWalkSAT [19], a local search solver
and Clone [16], a branch-and-bound solver. Both these algorithms are propositional and therefore
they are unable to exploit relational structure that is inherent to MLNs.

Integer Polynomial Programming (IPP). An IPP problem is defined as follows:
Maximize f(x1, x2, ..., xn)

Subject to gj(x1, x2, ..., xn) ≥ 0 (j = 1, 2, ...,m)

where each xi takes finite integer values, and the objective function f(x1, x2, ..., xn), and each of
the constraints gj(x1, x2, ..., xn) are polynomials on x1, x2, ..., xn. We will compactly represent
an integer polynomial programming problem (IPP) as an ordered triple I = 〈f,G,X〉, where
X = {x1, x2, ..., xn}, and G = {g1, g2, ..., gm}.

3 Probabilistic Theorem Proving Based MAP Inference Algorithm

We motivate our approach by presenting in Algorithm 1, the most basic algorithm for lifted MAP
inference. Algorithm 1 extends the probabilistic theorem proving (PTP) algorithm of Gogate and
Domingos [6] to MAP inference and integrates it with Sarkhel et al’s lifted MAP inference rule [18]. It
is obtained by replacing the summation operator in the conditioning step of PTP by the maximization
operator (PTP computes the partition function). Note that throughout the paper, we will present
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algorithms that compute the MAP value rather than the MAP assignment; the assignment can be
recovered by tracing back the path that yielded the MAP value. We describe the steps in Algorithm 1
next, starting with some required definitions.

Algorithm 1 PTP-MAP(MLN M )
if M is empty return 0
Simplify(M )
if M has disjoint MLNs M1, . . . ,Mk then

return
∑k

i=1 PTP-MAP(Mi)
if M has a decomposer d such that D(i ∈ d) > 1 then

return PTP-MAP(M |d)
if M has an isolated atom R such that D(iR) > 1 then

return PTP-MAP (M |{1R})
if M has a singleton atom A then

return max
D(1A)
i=0 PTP-MAP(M |(A, i)) + w(A, i)

Heuristically select an argument iR
return PTP-MAP(M |G(iR))

Two arguments iR and jS are called unifiable
if they share a logical variable in a MLN for-
mula. Clearly, unifiable, if we consider it as
a binary relation U(iR, jS) is symmetric and
reflexive. Let U be the transitive closure of
U . Given an argument iS, let Unify(iS) denote
the equivalence class under U .

Simplification. In the simplification step, we
simplify the predicates possibly reducing their
arity (cf. [6, 10] for details). An example sim-
plification step is the following: if no atoms of
a predicate share logical variables with other
atoms in the MLN then we can replace the
predicate by a new predicate having just one
argument; the domain size of the argument is
the product of domain sizes of the individual arguments.

Example 1. Consider a normal MLN with two weighted formulas: R(x1, y1) ∨ S(z1, u1), w1 and
R(x2, y2) ∨ S(z2, u2) ∨ T(z2, v2), w2. We can simplify this MLN by replacing R by a predicate
J having one argument such that D(1J) = D(1R) × D(2R). The new MLN has two formulas:
J(x1) ∨ S(z1, u1), w1 and J(x2) ∨ S(z2, u2) ∨ T(z2, v2), w2.

Decomposition. If an MLN can be decomposed into two or more disjoint MLNs sharing no first-order
atom, then the MAP solution is just a sum over the MAP solutions of all the disjoint MLNs.

Lifted Decomposition. Main idea in lifted decomposition [6] is to identify identical but disconnected
components in ground Markov network by looking for symmetries in the first-order representation.
Since the disconnected components are identical, only one of them needs to be solved and the MAP
value is the MAP value of one of the components times the number of components. One way of
identifying identical disconnected components is by using a decomposer [6, 10], defined below.

Definition 1. [Decomposer] Given a MLN M having m formulas denoted by f1, . . . , fm, d =
Unify(iR) where R is a predicate in M , is called a decomposer iff the following conditions are
satisfied: (i) for each predicate R in M there is exactly one argument iR such that iR ∈ d; and (ii) in
each formula fi, there exists a variable x such that x appears in all atoms of fi and for each atom
having predicate symbol R in fi, x appears at position iR ∈ d.

Denoted by M |d the MLN obtained from M by setting domain size of all elements iR of d to one
and updating weight of each formula that mentions R by multiplying it by D(iR). We can prove that:

Proposition 1. Given a decomposer d, the MAP value of M is equal to the MAP value of M |d.

Example 2. Consider a normal MLN M having two weighted formulas R(x) ∨ S(x), w1 and R(y) ∨
T(y), w2 where D(1R) = D(1S) = D(1T) = n. Here, d = {1R, 1S, 1T} is a decomposer. The
MLN M |d is the MLN having the same two formulas as M with weights updated to nw1 and nw2

respectively. Moreover, in the new MLN D(1R) = D(1S) = D(1T) = 1.

Isolated Singleton Rule. Sarkhel et al. [18] proved that if the MLN M has an isolated predicate R
such that all atoms of R do not share any logical variables with other atoms, then one of the MAP
solutions of M has either all ground atoms of R set to true or all of them set to false, namely, the
solution lies at the extreme assignments to groundings of R. Since we simplify the MLN, all such
predicates R have only one argument, namely, they are singleton. Therefore, the following proposition
is immediate:

Proposition 2. If M has an isolated singleton predicate R, then the MAP value of M equals the
MAP value of M |{1R} (the notation M |{1R} is defined just after the definition of the decomposer).

Lifted Conditioning over Singletons. Performing a conditioning operation on a predicate means
conditioning on all possible ground atoms of that predicate. Naı̈vely it can result in exponential
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number of alternate MLNs that need to be solved, one for each assignment to all groundings of the
predicate. However if the predicate is singleton, we can group these assignments into equi-probable
sets based on number of true groundings of the predicate (counting assignment) [6, 10, 12]. In
this case, we say that the lifted conditioning operator is applicable. For a singleton A, we denote
the counting assignment as the ordered pair (A, i) which the reader should interpret as exactly i
groundings of A are true and the remaining are false.

We denote by M |(A, i) the MLN obtained from M as follows. For each element jR in Unify(1A)
(in some order), we split the predicate R into two predicates R1 and R2 such that D(jR1) = i and
D(jR2) = D(1A)− i. We then rewrite all formulas using these new predicate symbols. Assume that
A is split into two predicates A1 and A2 respectively with D(1A1) = i and D(1A2) = D(1A)− i. Then,
we delete all formulas in which either A1 appears positively or A2 appears negatively (because they
are satisfied). Next, we delete all literals of A1 and A2 from all formulas in the MLN. The weights of
all formulas (which are not deleted) remain unchanged except those formulas in which atoms of A1
or A2 do not share logical variables with other atoms. The weight of each such formula f with weight
w is changed to w ×D(1A1) if A1 appears in the clause or to w ×D(1A2) if A2 appears in the clause.

The weight w(A, i) is calculated as follows. Let F (A1) and F (A2) denote the set of satisfied formulas
(which are deleted) in which A1 and A2 participate in. We introduce some additional notation. Let
V (f) denote the set of logical variables in a formula f . Given a formula f , for each variable y ∈ V (f),
let iR(y) denote the position of the argument of a predicate R such that y appears at that position in an
atom of R in f . Then, w(A, i) is given by:

w(A, i) =

2∑
k=1

∑
fj∈F (Ak)

wj

∏
y∈V (fj)

D(iR(y))

We can show that:
Proposition 3. Given an MLN M having singleton atom A, the MAP-value of M equals
max

D(1A)
i=0 MAP-value(M |(A, i)) + w(A, i).

Example 3. Consider a normal MLN M having two weighted formulas R(x) ∨ S(x), w1 and R(y) ∨
S(z), w2 with domain sizes D(1R) = D(1S) = n. The MLN M |(R, i) is the MLN having three
weighted formulas: S2(x2), w1; S1(x1), w2(n− i) and S2(x3), w2(n− i) with domains D(1S1) = i
and D(1S2) = n− i. The weight w(R, i) = iw1 + niw2.

Partial grounding. In the absence of a decomposer, or when the singleton rule is not applicable, we
will have to partially ground a predicate. For this, we heuristically select an argument iR to ground.
Let M |G(iR) denote the MLN obtained from M as follows. For each argument iS ∈ Unify(iR), we
create D(iS) new predicates which have all arguments of S except iS. We then update all formulas
with the new predicates. For example,
Example 4. Consider a MLN with two formulas: R(x, y) ∨ S(y, z), w1 and S(a, b) ∨ T(a, c), w2.
Let D(2R) = 2. After grounding 2R, we get an MLN having four formulas: R1(x1) ∨ S1(z1), w1,
R2(x2) ∨ S2(z2), w1, S1(b1) ∨ T1(c1), w2 and S2(b2) ∨ T2(c2), w2.

Since partial grounding will create many new clauses, we will try to use this operator as sparingly as
possible. The following theorem is immediate from [6, 18] and the discussion above.
Theorem 1. PTP-MAP(M) computes the MAP value of M .

4 Integer Polynomial Programming formulation for Lifted MAP

PTP-MAP performs an exhaustive search over all possible lifted assignments in order to find the
optimal MAP value. It can be very slow without proper pruning, and that is why branch-and-bound
algorithms are widely used for many similar optimization tasks. The branch-and-bound algorithm
maintains a global best solution found so far, as a lower bound. If the estimated upper bound of a node
is not better than the lower bound, the node is pruned and the search continues with other branches.
However instead of developing a lifted MAP specific upper bound heuristic to improve Algorithm 1,
we propose to encode the lifted search problem as an Integer Polynomial Programming (IPP) problem.
This way we can use existing off-the-shelf advanced machinery, which includes pruning techniques,
search heuristics, caching, problem decomposition and upper bounding techniques, to solve the IPP.
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At a high level, our encoding algorithm runs PTP-MAP schematically, performing all steps in PTP-
MAP except the search or conditioning step. Before we present our algorithm, we define schematic
MLNs (SMLNs) – a basic structure on which our algorithm operates. SMLNs are normal MLNs
with two differences: (1) weights attached to formulas are polynomials instead of constants and (2)
Domain sizes of arguments are linear expressions instead of constants.

Algorithm 2 SMLN-2-IPP(SMLN S)
if S is empty return 〈0, ∅, ∅〉
Simplify(S)
if S has disjoint SMLNs then

for disjoint SMLNs Si...Sk in S
〈fi, Gi, Xi〉 = SMLN-2-IPP(Si)

return 〈
∑k

i=1 fi,∪
k
i=1Gi,∪k

i=1Xi〉
if S has a decomposer d then

return SMLN-2-IPP(S|d)
if S has a isolated singleton R then

return SMLN-2-IPP(S|{iR})
if S has a singleton atom A then

Introduce an IPP variable ‘i’
Form a constraint g as ‘(0 ≤ i ≤ D(1A))’
〈f,G,X〉 = SMLN-2-IPP(S|(A, i))
return 〈f + w(A, i), G ∪ {g}, X ∪ {i}〉

Heuristically select an argument iR
return SMLN-2-IPP(S|G(iR))

Algorithm 2 presents our approach to encode lifted
MAP problem as an IPP problem. It mirrors Algo-
rithm 1, with only difference being at the lifted condi-
tioning step. Specifically, in lifted conditioning step,
instead of going over all possible branches corre-
sponding to all possible counting assignments, the
algorithm uses a representative branch which has a
variable associated for the corresponding counting
assignment. All update steps described in the previ-
ous section remain unchanged with the caveat that in
S|(A, i), i is symbolic(an integer variable). At termi-
nation, Algorithm 2 yields an IPP. Following theorem
is immediate from the correctness of Algorithm 1.
Theorem 2. Given an MLN M and its associated
schematic MLN S, the optimum solution to the Inte-
ger Polynomial Programming problem returned by
SMLN-2-IPP(S) is the MAP solution of M .

In the next three examples, we show the IPP output
by Algorithm 2 on some example MLNs.
Example 5. Consider an MLN having one weighted
formula: R(x) ∨ S(x), w1 such that D(1R) = D(1S) = n. Here, d = {1R, 1S} is a decomposer. By
applying the decomposer rule, weight of the formula becomes nw1 and domain size is set to 1. After
conditioning on R objective function obtained is nw1r and the formula changes to S(x), nw1(1− r).
After conditioning on S, the IPP obtained has objective function nw1r + nw1(1 − r)s and two
constraints: 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1.
Example 6. Consider an MLN having one weighted formula: R(x)∨S(y), w1 such that D(1R) = nx

and D(1S) = ny. Here R and S are isolated, and therefore by applying the isolated singleton rule
weight of the formula becomes nxnyw1. This is similar to the previous example; only weight of the
formula is different. Therefore, substituting this new weight, IPP output by Algorithm 2 will have
objective function nxnyw1r + nxnyw1(1− r)s and two constraints 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1.
Example 7. Consider an MLN having two weighted formulas: R(x) ∨ S(x), w1 and R(z) ∨ S(y), w2

such that D(1R) = D(1S) = n. On this MLN, the IPP output by Algorithm 2 has the objective
function rw1 + r2w2 + rw2(n− r) + s2w1(n− r) + s2w2(n− r)2 + s1w2(n− r)r and constraints
0 ≤ r ≤ n, 0 ≤ s1 ≤ 1 and 0 ≤ s2 ≤ 1. The operations that will be applied in order are: lifted
conditioning on R creating two new predicates S1 and S2; decomposer on 1S1; decomposer on 1S2;
and then lifted conditioning on S1 and S2 respectively.

4.1 Solving Integer Polynomial Programming Problem

Although we can directly solve the IPP using any off-the-shelf mathematical optimization software,
IPP solvers are not as mature as Integer Linear programming(ILP) solvers. Therefore, for efficiency
reasons, we propose to convert the IPP to an ILP using the classic method outlined in [25] (we skip the
details for lack of space). The method first converts the IPP to a zero-one Polynomial Programming
problem and then subsequently linearizes it by adding additional variables and constraints for each
higher degree terms. Once the problem is converted to an ILP problem we can use any standard ILP
solver to solve it. Next, we state a key property about this conversion in the following theorem.
Theorem 3. The search space for solving the IPP obtained from Algorithm 2 by using the conversion
described in [25] is polynomial in the max-range of the variables.

Proof. Let n be number of variables of the IPP problem, where each of the variables has range from
0 to (d − 1) (i.e., for each variable 0 ≤ vi ≤ d − 1). As we first convert everything to binary, the
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zero-one Polynomial Programming problem will have O(n log2 d) variables. If the highest degree of
a term in the IPP problem is k, we will need to introduce O(log2 d

k) binary variables (as multiplying
k variables, each bounded by d, will result in terms bounded by dk) to linearize it. Since search space
of an ILP is exponential in number of variables, search space for solving the IPP problem is:

O(2(n log2 d+log2 dk)) = O(2n log2 d)O(2k log2 d) = O(dn)O(dk) = O(dn+k)

We conclude this section by summarizing the power of our new approach:

Theorem 4. The search space of the IPP returned by Algorithm 2 is smaller than or equal to the
search space of the Integer Linear Program (ILP) obtained using the algorithm proposed in Sarkhel
et al. [18], which in turn is smaller than the size of the search space associated with the ground
Markov network.

5 Experiments

We used a parallelized ILP solver called Gurobi [9] to solve ILPs generated by our algorithm as
well as by other competing algorithms used in our experimental study. We compared performance of
our new lifted algorithm (which we call IPP) with four other algorithms from literature: Alchemy
(ALY) [11], Tuffy(TUFFY) [14], ground inference based on ILP (ILP), and lifted MAP (LMAP)
algorithm of Sarkhel et al. [18]. Alchemy and Tuffy are two state-of-the-art open source software for
learning and inference in MLNs. Both of them first ground the MLN and then use an approximate
solver, MaxWalkSAT [19] to compute MAP solution. Unlike Alchemy, Tuffy uses clever Database
tricks to speed up computation. ILP is obtained by converting MAP problem over ground Markov
network to an ILP. LMAP also converts the MAP problem to ILP, however its ILP encoding can be
much more compact than ones used by ground inference methods because it processes “non-shared
atoms” in a lifted manner (see [18] for details). We used following three MLNs to evaluate our
algorithm:

(i) An MLN which we call Student that consists of following four formulas,
Teaches(teacher,course) ∧ Takes(student,course) → JobOffers(student,company);
Teaches(teacher,course); Takes(student,course); ¬JobOffers(student,company)

(ii) An MLN which we call Relationship that consists of following four formulas,
Loves(person1 ,person2) ∧ Friends(person2, person3) → Hates(person1, person3);
Loves(person1, person2); Friends(person1, person2); ¬Hates(person1, person2);

(iii) Citation Information-Extraction (IE) MLN [11] from the Alchemy web page, consisting of
five predicates and fourteen formulas.

To compare performance and scalability, we ran each algorithm on aforementioned MLNs for varying
time-bounds and recorded solution quality (i.e., the total weight of false clauses) achieved by each.
All our experiments were run on a third generation i7 quad-core machine having 8GB RAM.

For Student MLNs, results are shown in Fig 1(a)-(c). On the MLN having 161K clauses, ILP, LMAP
and IPP converge quickly to the optimal answer while TUFFY converges faster than ALY. For the
MLN with 812K clauses, LMAP and IPP converge faster than ILP and TUFFY. ALY is unable to
handle this large Markov network and runs out of memory. For the MLN with 8.1B clauses, only
LMAP and IPP are able to produce a solution with IPP converging much faster than LMAP. On this
large MLN, all three ground inference algorithms, ILP, ALY and TUFFY ran out of memory.

Results for Relationship MLNs are shown in Fig 1(d)-(f) and are similar to Student MLNs. On MLNs
with 9.2K and 29.7K clauses ILP, LMAP and IPP converge faster than TUFFY and ALY, while
TUFFY converges faster than ALY. On the largest MLN having 1M clauses only LMAP, ILP and IPP
are able to produce a solution with IPP converging much faster than other two.

For IE MLN results are shown in Fig 1(g)-(i) which show a similar picture with IPP outperforming
other algorithms as we increase number of objects in the domain. In fact on the largest IE MLN
having 15.6B clauses only IPP is able to output a solution while other approaches ran out of memory.

In summary, as expected, IPP and LMAP, two lifted approaches are more accurate and scalable than
three propositional inference approaches: ILP, TUFFY and ALY. IPP not only scales much better but
also converges much faster than LMAP, clearly demonstrating the power of our new approach.
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(a) Student(1.2K,161K,200)
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(b) Student(2.7K,812K,450)
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(c) Student(270K,8.1B,45K)
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(d) Relation(1.2K,9.2K,200)
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(e) Relation(2.7K,29.7K,450)
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(f) Relation(30K,1M,5K)
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(g) IE(3.2K,1M,100)
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(h) IE(82.8K,731.6M,900)
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Figure 1: Cost vs Time: Cost of unsatisfied clauses(smaller is better) vs time for different domain sizes.
Notation used to label each figure: MLN(numvariables, numclauses, numevidences). Note: three quantities
reported are for ground Markov network associated with the MLN. Standard deviation is plotted as error bars.

6 Conclusion

In this paper we presented a general approach for lifted MAP inference in Markov logic networks
(MLNs). The main idea in our approach is to encode MAP problem as an Integer Polynomial Program
(IPP) by schematically applying three lifted inference steps to the MLN: lifted decomposition, lifted
conditioning and partial grounding. To solve the IPP, we propose to convert it to an Integer Linear
Program (ILP) using the classic method outlined in [25]. The virtue of our approach is that the
resulting ILP can be much smaller than the one obtained from ground Markov network. Moreover,
our approach subsumes the recently proposed lifted MAP inference approach of Sarkhel et al. [18]
and is at least as powerful as probabilistic theorem proving [6]. Perhaps, the key advantage of our
approach is that it runs lifted inference as a pre-processing step, reducing the size of the theory and
then applies advanced propositional inference algorithms to this theory without any modifications.
Thus, we do not have to explicitly lift (and efficiently implement) decades worth of research and
advances on propositional inference algorithms, treating them as a black-box.
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