Node Splitting: A Constructive Algorithm for
Feed-Forward Neural Networks

Mike Wynne-Jones
Research Initiative in Pattern Recognition
St. Andrews Road, Great Malvern
WRI14 3PS, UK

mikewj@hermes.mod.uk

Abstract

A constructive algorithm is proposed for feed-forward neural networks,
which uses node-splitting in the hidden layers to build large networks from
smaller ones. The small network forms an approximate model of a set of
training data, and the split creates a larger more powerful network which is
initialised with the approximate solution already found. The insufficiency
of the smaller network in modelling the system which generated the data
leads to oscillation in those hidden nodes whose weight vectors cover re-
gions in the input space where more detail is required in the model. These
nodes are identified and split in two using principal component analysis,
allowing the new nodes to cover the two main modes of each oscillating
vector. Nodes are selected for splitting using principal component analysis
on the oscillating weight vectors, or by examining the Hessian matrix of
second derivatives of the network error with respect to the weights. The
second derivative method can also be applied to the input layer, where it
provides a useful indication of the relative importances of parameters for
the classification task. Node splitting in a standard Multi Layer Percep-
tron is equivalent to introducing a hinge in the decision boundary to allow
more detail to be learned. Initial results were promising, but further eval-
uation indicates that the long range effects of decision boundaries cause
the new nodes to slip back to the old node position, and nothing is gained.
This problem does not occur in networks of localised receptive fields such
as radial basis functions or gaussian mixtures, where the technique appears
to work well.

1072



Node Splitting: A Contructive Algorithm for Feed-Forward Neural Networks

1 Introduction

To achieve good generalisation in neural networks and other techniques for inferring
a model from data, we aim to match the number of degrees of freedom of the model
to that of the system generating the data. With too small a model we learn an
incomplete solution, while too many free parameters capture individual training
samples and noise.

Since the optimum size of network is seldom known in advance, there are two alter-
native ways of finding it. The constructive algorithm aims to build an approximate
model, and then add new nodes to learn more detail, thereby approaching the op-
timum network size from below. Pruning algorithms, on the other hand, start with
a network which is known to be too big, and then cut out nodes or weights which
do not contribute to the model. A review of recent techniques [WJ91a] has led the
author to favour the constructive approach, since pruning still requires an estimate
of the optimum size, and the initial large networks can take a long time to train.
Constructive algorithms offer fast training of the initial small networks, with the
network size and training slowness reflecting the amount of information already
learned. The best approach of all would be a constructive algorithm which also
allowed the pruning of unnecessary nodes or weights from the network.

The constructive algorithm trains a network until no further detail of the training
data can be learned, and then adds new nodes to the network. New nodes can be
added with random weights, or with pre-determined weights. Random weights are
likely to disrupt the approximate solution already found, and are unlikely to be
initially placed in parts of the weight space where they can learn something useful,
although encouraging results have been reported in this area.[Ash89] This problem
is likely to be accentuated in higher dimensional spaces. Alternatively, weights can
be pre-determined by measurements on the performance of the seed network, and
this is the approach adopted here. One node is turned into two, each with half the
output weight. A divergence is introduced in the weights into the nodes which is
sufficient for them behave independently in future training without disrupting the
approximate solution already found.

2 Node-Splitting

A network is trained using standard techniques until no further improvement on
training set performance is achieved. Since we begin with a small network, we have
an approximate model of the data, which captures the dominant properties of the
generating system but lacks detail. We now freeze the weights in the network, and
calculate the updates which would be made them, using simple gradient descent,
by each separate training pattern. Figure 1 shows the frozen vector of weights into
a single hidden node, and the scatter of proposed updates around the equilibrium
position.

The picture shows the case of a hidden node where there is one clear direction
of oscillation. This might be caused by two clusters of data within a class, each
trying to use the node in its own area of the input space, or by a decision boundary
pulled clockwise by some patterns and anticlockwise by others. If the oscillation
is strong, either in its exhibition of a clear direction or in comparison with other

1073



1074

Wynne-Jones

New Node
#1

Weight Update
Vectors

Weight Vector of Old Node

New Node
#2

Figure 1: A hidden node weight vector and updates proposed by individual training
patterns

nodes in the same layer, then the node is split in two. The new nodes are placed
one standard deviation either side of the old position. While this divergence gives
the nodes a push in the right direction, allowing them to continue to diverge in later
training, the overall effect on the network is small. In most cases there is very little
degradation in performance as a result of the split.

The direction and size of oscillation are calculated by principal component anal-
ysis of the weight updates. By a traditional method, we are required to make a
covariance matrix of the weight updates for the weight vector into each node:

C=) éwéw’ (1)
r

where p is the number of patterns. The matrix is then decomposed to a set of eigen-
values and eigenvectors; the largest eigenvalue is the variance of oscillation and the
corresponding eigenvector is its direction. Suitable techniques for performing this
decomposition include Singular Value Decomposition and Householder Reduction.
[Vet86] A much more suitable way of calculating the principal components of a
stream of continuous measurements such as weight updates is iterative estimation.
An estimate is stored for each required principal component vector, and the esti-
mates are updated using each sample. [Oja83, San89] By Oja’s method, the scalar
product of the current sample vector with each current estimate of the eigenvectors
is used as a matching coefficient, M. The matching coefficient is used to re-estimate
the eigenvalues and eigenvectors, in conjunction with a gain term A which decays
as the number of patterns seen increases. The eigenvectors are updated by a pro-
portion AM of the current sample, and the eigenvalues by AAf2. The trace (sum of
eigenvalues) can also be estimated simply as the mean of the traces (sum of diagonal
elements) of the individual sample covariance matrices. The principal component
vectors are renormalised and orthogonalised after every few updates. This algorithm
is of order n, the number of eigenvalues required, for the re-estimation, and O(n?)
for the orthogonalisation; the matrix decomposition method can take exponential



Node Splitting: A Contructive Algorithm for Feed-Forward Neural Networks

time, and is always much slower in practice.

In a recent paper on Meiosis Networks, Hanson introduced stochastic weights in the
multi layer perceptron, with the aim of avoiding local minima in training.[Han90]
A sample was taken from a gaussian distribution each time a weight was used;
the mean was updated by gradient descent, and the variance reflected the network
convergence. The variance was allowed to decay with time, so that the network
would approach a deterministic state, but was increased in proportion to the updates
made to the mean. While the network was far from convergence these updates were
large, and the variance remained large. Node splitting was implemented in this
system, in nodes where the variances on the weights were large compared with the
means. In such cases, two new nodes were created with the weights one standard
deviation either side of the old mean: one SD is added to all weights to one node,
and subtracted for all weights to the other. Preliminary results were promising, but
there appear to be two problems with this approach for node-splitting. First, the
splitting criterion is not good: a useless node with all weights close to zero could
have comparatively large variances on the weights owing to noise. This node would
be split indefinitely. Secondly and more interestingly, the split is made without
regard to the correlations in sign between the weight updates, shown as dots in the
scatter plots of figure 2. In figure 2a, Meiosis would correctly place new nodes in the
positions marked with crosses, while in figure 2b, the new nodes would be placed
in completely the wrong places. This problem does not occur in the node splitting
scheme based on principal component analysis.

(a) (b)

Figure 2: Meiosis networks split correctly if the weight updates are correlated in
sign (a), but fail when they are not (b).

3 Selecting nodes for splitting

Node splitting is carried out in the direction of maximum variance of the scatter plot
of weight updates proposed by individual training samples. The hidden layer nodes
most likely to benefit from splitting are those for which the non-spherical nature

1075















