
Node Splitting: A Constructive Algorithm for
Feed-Forward Neural Networks

1072

Mike Wynne-Jones
Research Initiative in Pattern Recognition

St. Andrews Road, Great Malvern
WR14 3PS, UK

mikewj@hermes.mod.uk

Abstract

A constructive algorithm is proposed for feed-forward neural networks,
which uses node-splitting in the hidden layers to build large networks from
smaller ones. The small network forms an approximate model of a set of
training data, and the split creates a larger more powerful network which is
initialised with the approximate solution already found. The insufficiency
of the smaller network in modelling the system which generated the data
leads to oscillation in those hidden nodes whose weight vectors cover re
gions in the input space where more detail is required in the model. These
nodes are identified and split in two using principal component analysis,
allowing the new nodes t.o cover the two main modes of each oscillating
vector. Nodes are selected for splitting using principal component analysis
on the oscillating weight vectors, or by examining the Hessian matrix of
second derivatives of the network error with respect to the weight.s. The
second derivat.ive method can also be applied to the input layer, where it
provides a useful indication of t.he relative import.ances of parameters for
the classification t.ask. Node splitting in a standard Multi Layer Percep
t.ron is equivalent to introducing a hinge in the decision boundary to allow
more detail to be learned. Initial results were promising, but further eval
uation indicates that the long range effects of decision boundaries cause
the new nodes to slip back to the old node position, and nothing is gained.
This problem does not occur in networks of localised receptive fields such
as radial basis functions or gaussian mixtures, where the t.echnique appears
to work well.

Node Splitting: A Contructive Algorithm for Feed-Forward Neural Networks 1073

1 Introduction

To achieve good generalisation in neural networks and other techniques for inferring
a model from data, we aim to match the number of degrees of freedom of the model
to that of the system generating the data. With too small a model we learn an
incomplete solution, while too many free parameters capture individual training
samples and noise.

Since the optimum size of network is seldom known in advance, there are two alter
native ways of finding it. The constructive algorithm aims to build an approximate
model, and then add new nodes to learn more detail, thereby approaching the op
timum network size from below. Pruning algorithms, on the other hand, start with
a network which is known to be too big, and then cut out nodes or weights which
do not contribute to the model. A review of recent techniques [\VJ91a] has led the
author to favour the constructive approach, since pruning still requires an estimate
of the optimum size, and the initial large net.works can take a long time t.o train.
Constructive algorithms offer fast training of the initial small networks, with the
network size and training slowness reflecting the amount of information already
learned. The best approach of all would be a constructive algorithm which also
allowed the pruning of unnecessary nodes or weights from the net.work.

The constructive algorithm trains a net.work until no further detail of the training
data can be learned, and then adds new nodes to t.he network. New nodes can be
added with random weights, or with pre-determined weight.s. Random weights are
likely to disrupt the approximate solut.ion already found, and are unlikely to be
initially placed in parts of the weight space where they can learn something useful,
although encouraging results have been reported in t.his ar~a.[Ash89] This problem
is likely to be accentuated in higher dimensional spaces. Alt.ernatively, weights can
be pre-determined by measurements on the performance of the seed network, and
this is the approach adopted here. One node is turned into two, each wit.h half the
output weight. A divergence is introduced in the weights into the nodes which is
sufficient for them behave independently in future training without disrupting the
approximate solution already found.

2 Node-Splitting

A network is trained using standard techniques until no furt.her improvement on
training set performance is achieved. Since we begin with a small network, we have
an approximate model of the data, which captures the dominant properties of the
generating system but lacks detail. We now freeze the weight.s in the network, and
calculate the updates which would be made them, using simple gradient descent,
by each separate t.raining pattern. Figure 1 shows t.he frozen vector of weights into
a single hidden node, and the scatter of proposed updates around the equilibrium
posit.ion.

The picture shows the case of a hidden node where there is one clear direction
of oscillation. This might be caused by two clusters of data within a class, each
trying to use the node in its own area of the input space, or by a decision boundary
pulled clockwise by some patterns and anti clockwise by others. If the oscillation
is strong, either in its exhibition of a clear direction or in comparison with other

1074 Wynne-Jones

New Node
#1 --~U(Weight Update

Vectors

Figure 1: A hidden node weight vector and updates proposed hy individual t.raining
patterns

nodes in the same layer, then the node is split in two. The new nodes are placed
one standard deviation either side of the old position. \Vhile this divergence gives
the nodes a push in the right direction, allowing them t.o continue to diverge in later
t.raining, the overall effect on the network is small. In most cases t.here is very little
degradation in performance as a result of the split.

The direction and size of oscillation are calculated by principal component anal
ysis of the weight updates. By a traditional method, we are required to make a
cova.riance matrix of the weight updat.es for the weight vector int.o each node:

c = L6w6wT (1)
p

where p is the number of patterns. The mat.rix is then decomposed to a set of eigen
values and eigenvectors; the largest. eigenvalue is the variance of oscillation and the
corresponding eigenvector is it.s direction. Suitable techniques for performing this
decomposition include Singular Value Dewmposition and Householder Reduction.
[Vet86] A much more suit.able way of calculating the principal components of a
stream of continuous measurements such as weight updat.es is iterative est.imation.
An est.imate is stored for each required principal component. vector, and the esti
mat.es are updated using each sample. [Oja83, San89] By Oja's method, the scalar
product of t.he current sample vector wit.h each current est.imate of the eigenvectors
is used as a mat.ching coefficient., M. The matching coefficient is used to re-estima.te
the eigenvalues and eigenvectors, in conjunction wit.h a gain term). which decays
as the number of patterns seen increases. The eigenvectors are updated by a pro
portion)'M of the current sample, and t.he eigenvalues hy).lU 2. The trace (sum of
eigenvalues) can also be est.imated simply as the mean of the traces (sum of diagonal
elements) of t.he individual sample covariance mat.rices. The principal component
vectors are renormalised and orthogonalised after every few updat.es. This algorithm
is of order n, the number of eigenvalues required, for the re-estimation, and O(n2)
for the orthogonalisation; the matrix decomposition method can take exponential

Node Splitting: A Contructive Algorithm for Feed-Forward Neural Networks 1075

time, and is always much slower in practice.

In a recent paper on At eiosis Networks, Hanson introduced stochastic weights in the
multi layer perceptron, with the aim of avoiding local minima in training.[Han90]
A sample was taken from a gaussian distribution each time a weight was used;
the mean was updated by gradient descent, and the variance reflected the network
convergence. The variance was allowed to decay with time, so that the network
would approach a deterministic state, but was increased in proportion to the updates
made to the mean. \Vhile the network wa.g far from convergence these updates were
large, and the variance remained large. Node splitting wa.g implemented in this
system, in nodes where the variances on the weights were large compared with the
means. In such cases, two new nodes were created with the weights one standard
deviation either side of the old mean: one SD is added to all weights to one node,
and subtracted for all weights to the other. Preliminary results were promising, but
there appear to be two problems with this approach for node-splitting. First, the
splitting criterion is not good: a useless node with all weights close to zero could
have comparatively large variances on the weights owing to noise. This node would
be split indefinit.ely. Secondly and more interestingly, the split is made wit.hout
regard to the correlations in sign between the weight updates, shown as dots in the
scatter plot.s of figure 2. In figure 2a, Meiosis would correctly place new nodes in the
positions marked with crosses, while in figure 2b, the new nodes would he placed
in completely the wrong places. This problem does not occur in the node splitting
scheme based on principal component analysis.

(a) (b)

• • • •
.~ • • • ••

• • X • • • • • • • •• • .. • • '-. .. . ~ . . ~ ... ••• • •• • • •• ~ • ••
-.~ .. ••• • • • • •• • •• •

• . .. -
•• • •

~. .. . • •• • • • .~ ..
• •

• • •
X • • • •

• •

Figure 2: Meiosis networks split correctly if the weight. updates are correlated in
sign (a), but fail when they are not (b).

3 Selecting nodes for splitting

N ode splitting is carried out in t.he direct.ion of maximum variance of the scatter plot
of weight updates proposed by individual training samples. The hidden layer nodes
most likely t.o benefit from splitting are those for which the non-spherical nature

1076 Wynne-Jones

of the scatter plot is most pronounced. In later implementations this criterion was
measured by comparing the largest eigenvalue with the sum of the eigenvalues,
both these quantities being calculated by the iterative method. This is less simple
in cases where there are a number of dominant directions of variance; the scatter
plot might, for example be a four dimensional disk in a ten dimensional space, and
hence present the possibility of splitt.ing one node into eight. It is hoped that these
more complicat.ed splits will be the suhject of further research.

An alternative approach in determining the need of nodes to be split, in comparison
with other nodes in the same layer, is to use the second derivat.ives of t.he network
error with respect to a parameter of the nodes which is normalised across all nodes
in a given layer of the network. Such a parameter wa.c;; proposed by Mozer and
Smolensky in [Sm089]: a multiplicative gat.ing function is applied to the outputs of
the nodes, with its gating parameter set to one. Small incrempnt.s in this parameter
can be used to characterise the error surface around the unity value, with the result
that derivatives are normalised a.cross all nodes in a given layer of the network.
Mozer and Smolensky rpplaced the sum squared error crit.erion with a modulus er
ror criterion to preserve non-zero gradients close to the local minimum reached in
training; we prefer to characterise the t.rue error surface by mpans of second deriva
t.ives, which can be calculated by repeated use of the chain rule (hackpropagat.ion).
Backpropagat.ion of second derivat.ivps has previously been rpport.ed in [So190] and
[Hea90].

Since a high curvat.ure error minimum in t.he space of t.he gat.ing parampt.er for a
particular nocie indicat.es st.eep gradipnt.s surrounding thp minimum, it is t.hese nodes
which exhibit. t.he great.est instability in their weight-space position. In t.he weight
space, if the curvat.ure is high only in cert.ain directions, we have the situat.ion in
figure 1, where the node is oscillating, and is in need of splitt.ing. If the curvature is
high in all directions in comparison with other nodes, the network is highly sensitive
to changes in t.he node or it.s weights, and again it will benefit from splitting.

At t.he ot.her end of the scale of curvat.ure sensitivity, a node or weight wit.h very low
curvat.ure is one to which t.he network error is quit.e insensit.ive, and the parameter
is a suitable candidate for pruning. This scheme has previously been used for weight
pruning by Le Cun, Denker et a1. [SoW 0] , and offers the pot.ential for an int.egrated
syst.em of splitting and pruning - a truly adapt.ive net.work archit.ecture.

3.1 Applying the sensitivity measnre to inpnt nodes

In a.ddit.ion to using t.he ga.ting parameter sensit.ivit.y to select nodes for pruning,
Mozer and Smolensky mention the possibility of using it on the input nodes to
indicate those inputs to which the c1a.<;sification is most sensitive. This has been
implemented in our syst.em wit.h the second derivat.ive sensitivity measure, and ap
plied to a large financial classification prohlem supplied by THORN El\JI Research.
The analysis was carried out. on the 78-dimensional dat.a, and the input sensitivities
varied over several orders of magnit.ude. The inputs were grouped into four sets ac
cording to sensitivit.y, and MLPs of 10 hidden nodes were trained on each subset of
the dat.a. \Vhile the low sensitivit.y groups failed to learn anyt.hing at all, t.he higher
sensit.ivit.y groups quickly attained a reasonable classification rat.e. Ident.ification of
useless inputs leads t.o greatly increased training speed in fut.ure analysis, and can

