
Adaptive Market Making via Online Learning

Jacob Abernethy⇤
Computer Science and Engineering

University of Michigan
jabernet@umich.edu

Satyen Kale
IBM T. J. Watson Research Center

sckale@us.ibm.com

Abstract

We consider the design of strategies for market making in an exchange. A market
maker generally seeks to profit from the difference between the buy and sell price
of an asset, yet the market maker also takes exposure risk in the event of large price
movements. Profit guarantees for market making strategies have typically required
certain stochastic assumptions on the price fluctuations of the asset in question;
for example, assuming a model in which the price process is mean reverting. We
propose a class of “spread-based” market making strategies whose performance
can be controlled even under worst-case (adversarial) settings. We prove structural
properties of these strategies which allows us to design a master algorithm which
obtains low regret relative to the best such strategy in hindsight. We run a set of
experiments showing favorable performance on recent real-world stock price data.

1 Introduction

When a trader enters a market, say a stock or commodity market, with the desire to buy or sell a
certain quantity of an asset, how is this trader guaranteed to find a counterparty to agree to transact
at a reasonable price? This is not a problem in a liquid market, with a deep pool of traders ready to
buy or sell at any time, but in a thin market the lack of counterparties can be troublesome. A rushed
trader may even be willing to transact at a worse price in exchange for immediate execution.

This is where a market maker (MM) can be quite useful. A MM is any agent that participates in a
market by offering to both buy and sell the underlying asset at any time. To put it simply, a MM
consistently guarantees liquidity to the marketplace by promising to be a counterparty to any trader.
The act of market making has both potential benefits and risks. For one, the MM bears the risk
of transacting with better-informed traders that may know much more about the movement of the
asset’s price, and in such scenarios the MM can take on a large inventory of shares that it may have
to offload at a worse price. On the positive side, the MM can profit as a result of the bid-ask spread,
the difference between the MM’s buy price and sell price. In other words, if the MM buys 100 shares
of a stock from one trader at a price of p, and then immediately sells 100 shares of stock to another
trader at a price of p+�, the MM records a profit of 100�.

This describes the central goal of a profitable market making strategy: minimize the inventory risk
of large movements in the price while simultaneously aiming to benefit from the bid-ask spread.
The MM strategy has a state, which is the current inventory or holdings, receives as input order and
price data, and must decide what quantities and at what prices to offer in the market. In the present
paper we assume that the MM interacts with a continuous double auction via an order book, and the
MM can place both market and limit orders to the order book.

A number of MM strategies have been proposed, and in many cases certain profit/loss guarantees
have been given. But to the best of our knowledge all such guarantees (aside from [4]) have required

⇤Work performed while the author was in the CIS Department at the University of Pennsylvania and funded
by a Simons Postdoctoral Fellowship

1

stochastic assumptions on the traders or the sequence of price fluctuations. Often, e.g., one needs to
assume that the underlying price process exhibits a mean reverting behavior to guarantee profit.

In this paper we focus on constructing MM strategies that achieve non-stochastic guarantees on
profit and loss. We begin by proposing a class of market making strategies, parameterized by the
choice of bid-ask spread and liquidity, and we establish a data-dependent expression for the profit
and loss of each strategy at the end of a sequence of price fluctuations. The model we consider, as
well as the aforementioned class of strategies, builds off of the work of Chakraborty and Kearns [4].
In particular, we assume the MM is given an exogenously-specified price time series that is revealed
online. We also assume that the MM is able to make and cancel orders after every price fluctuation.

We extend the prior work [4] by considering the problem of online learning among this parameter-
ized class of strategies. Performance is measured in terms of regret, which is the difference between
the total value of the learner’s algorithm and that of the best strategy in hindsight. While this prob-
lem is related to the problem of learning from expert advice, standard algorithms assume that the
experts have no state; i.e. in each round, the cost of following any given expert’s advice is the same
as the cost to that expert. This is not the case for online learning of the bid-ask spread, where the
state, represented by the inventory of each strategy, affects the payoffs. We can prove however that
due to the combinatorial structure of these strategies, one can afford to switch state with bounded
cost. Using these structural properties we prove the following main result of this paper:

Theorem 1 There is an online learning algorithm, that, under a bounded price volatility assumption
(see Defintion 1) has O(

p
T) regret after T trading periods to the best spread-based strategy.

Experimental simulations of our online learning algorithms with real-world price data suggest that
this approach is quite promising; our algorithm frequently performs nearly as well as the best strat-
egy, and is often superior. Such empirical results provides some evidence that regret minimization
techniques are well-suited for adaptively setting the bid-ask spread.

Related Work Perhaps the most popular model to study market making has been the Glosten-
Milgrom model [11]. In this setting the market is facilitated by a specialist, a monopolistic market
maker that acts as the middle man for all trades. There has been some work in the Computer Science
literature that has considered the sequential decision problem of the specialist [8, 10], and this work
was extended to look at the more modern order book mechanism [9]. In our model traders interact
directly with an order book, not via a specialist, and the prices are set exogenously as in [4].

Over the past ten years that has been a burst of research within the AI and EconCS community on
the design of prediction markets in which traders can bet on the likelihood of future uncertain events
(like horse races, or elections). Much of this started with a couple of key results of Robin Hanson
[12, 13] who described how to design subsidized prediction markets via the use of proper scoring
rules. The key technique was a method to design an automated market maker, and there has been
much work on facilitating this using mechanisms based on shares (i.e. Arrow-Debreu securities).
There is a medium-sized literature on this topic by now [6, 5, 1, 2] and we mention only a selection.
The key difference between the present paper and the work on designing prediction markets is that
our techniques are solely focused on profit and risk, and not on other issues like price discovery or
information aggregation. Recent work by Della Penna and Reid [19] considered market making as
a the multi-armed bandit problem, and this is a notable exception where profit was the focus.

This “non-stochastic” approach we take to the market making problem echos many of the ideas
of Cover’s results on Universal Portfolio algorithms [20], an area that has received much followup
work [16, 15, 14, 3, 7] given its robustness to adversarially-chosen price fluctuations. But these
algorithms are of the “market taking” variety, that is they actively rebalance their portfolio on a
daily basis. Moreover, the goal of the Universal Portfolio is to get low regret with respect to the best
fixed mixture of investments, rather than the best bid-ask spread which is aim of the present work.

2 The Market Execution Framework

We now present our market model formally. We will consider the buying and selling of a single
security, say the stock of Microsoft, over the course of some time interval. We assume that all
events in the market take place at discrete points in time throughout this day. At each time period t a

2

market price pt is announced to the world. In a typical stock exchange this price will be rounded to a
discrete value; historically stock prices were quoted in 1

8

’s of a dollar, although now they are quoted
in pennies. We let � be the discretization parameter of the exchange, and for simplicity assume
� = 1/m for some positive integer m. Now let ⇧ be the set of discrete prices within some feasible
range, ⇧ := {�, 2�, 3�, . . . , (M� � 1)�,M}, where M is some reasonable bound on the largest price.

A trading strategy maintains two state variables at the beginning of every time period t: (a) the
holdings or inventory Ht 2 R, representing the amount of stock that the strategy is long or short
at the beginning of time period t (Ht will be negative if the strategy is short); (b) the cash Ct 2 R
of the strategy, representing the money earned or lost by the investor at that time. Initially we have
C

1

= H
1

= 0. Note that when Ct < 0 this is not necessarily bad, it simply means the investor has
borrowed money to purchase holdings, often referred to as “trading on margin”.

Let us now consider the trading mechanism at time t. For simplicity we assume there are two types
of trades that can be executed, and each will change the cash and holdings at the following time
period. By default, set Ht+1

 Ht and Ct+1

 Ct. Then the trading strategy can execute any
subset of the following two actions:

• Market Order: At time t the posted price is pt and the trader executes a trade of X shares,
with X 2 R. In this case we update the cash as Ct+1

 Ct+1

� ptX and Ht+1

Ht+1

+ X . Note that if X < 0 then this is a short sale in which case the trader’s cash
increases1

• Limit Order: Before time period t, the trader submits a demand schedule Lt : ⇧ ! R
+

,
where it is assumed that Lt(pt�1

) = 0. For every price p 2 ⇧ with p < pt�1

, the value
Lt(p) is the number of shares the trader would like to buy at a price of p. For every p > pt�1

the value Lt(p) is the number of shares the trader would like to sell at a price of p. One
should interpret a limit order in terms of “posting shares to the order book”: these shares
are up for sale (and/or purchase) but the order will only be executed if the price moves.
In round t the posted price becomes pt and it is assumed that all shares offered at any price
between pt�1

and pt are transacted. More specifically, we have two cases:
– If pt > pt�1

then for each p 2 ⇧ with pt�1

< p pt we update Ct+1

 Ct+1

+

pLt(p) and Ht+1

 Ht+1

� Lt(p);
– Else if pt < pt�1

then for each p 2 ⇧ with pt p < pt�1

we update Ct+1

Ct+1

� pLt(p) and Ht+1

 Ht+1

+ Lt(p).

It is worth noting market orders are quite different from limit orders. A limit order is a passive action
in the market, the trader simply states that he would be willing to trade a number of shares at a range
of different prices. But if the market does not move then no transactions occur. The market order is a
much more direct action to take, the transaction is guaranteed to execute at the current market price.
The market order has the downside that the trader does not get to specify the price at which he would
like to trade, contrary to the limit order. Roughly speaking, an MM strategy will generally interact
with the market via limit orders, since the MM is simply hoping to profit from liquidity provision.
But the MM may at times have to place market orders to balance inventory to control risk.

We include one more piece of notation, the value of the strategy’s portfolio Vt+1

at the end of time
period t, which can be defined explicitly in terms of the cash, holdings, and current market price:
Vt+1

:= Ct+1

+ ptHt+1

. In other words, Vt+1

is the amount of cash the strategy would have if it
liquidated all holdings at the current market price.

Assumptions of our model. In the described framework we make several simplifying assumptions
on the trading execution mechanism, which we note here.

(1) The trader pays neither transaction fees nor borrowing costs when his cash balance is negative.
(2) Market orders are executed at exactly the posted market price, without “slippage” of any kind.
This suggests that the market is very liquid relative to the actions of the MM.
(3) The market allows the buying and selling of fractional shares.

1Technically speaking, a brokerage firm won’t give the short-seller the cash to spend since this money will
be used to backup losses when the short position is closed. But for the purpose of accounting it is perfectly
reasonably to record cash in this way, assuming that the strategy ends up holdings at 0.

3

(4) The price sequence is “exogenously” determined, meaning that the trades we make do not affect
the current and future prices. This assumption has been made in previous results [4] and it is perhaps
quite strong, especially if the MM is providing the bulk of the liquidity. We leave it for future work
to consider the setting with a non-exogenous price process.
(5) Unexecuted limited orders are cancelled before the next period. That is, for any p not lying
between pt�1

to pt it is assumed that the Lt(p) untransacted shares at price p are removed from the
order book. This is just notational convenience: the MM can resubmit these shares via Lt+1

.

3 Spread-based Strategies

In this section we present a class of simple market making strategies which we refer to as spread-
based strategies since they maintain a fixed bid-ask spread throughout. We then prove some struc-
tural properties on this class of strategies. We only give proof sketches for lack of space; all proofs
can be found in an appendix in the supplementary material.

3.1 Spread-based strategies.

We consider market making strategies parameterized by a window size b 2 {�, 2�, . . . , B}, where
B is a multiple of �. Before round t, the strategy S(b) selects a window of size b, viz. [at, at + b],
starting with a

1

= p
1

. For some fixed liquidity density parameter ↵, it submits a buy order of ↵
shares at every price p 2 ⇧ such that p < at and a sell order ↵ shares at every price p 2 ⇧ such that
p > at + b. Depending on the price in the trading period pt, the strategy adjusts the next window by
the smallest amount necessary to include pt.

Algorithm 1 Spread-Based Strategy S(b)

1: Receive parameters b > 0, liquidity density ↵ > 0, inital price p
1

as input. Initialize a
1

:= p
1

.
2: for t = 1, 2, . . . , T do
3: Observe market price pt
4: If pt < at then at+1

 pt
5: Else If pt > at + b then at+1

 pt � b
6: Else at+1

 at
7: Submit limit order Lt+1

: Lt+1

(p) = 0 if p 2 [at+1

, at+1

+ b], else Lt+1

(p) = ↵.
8: end for

The intuition behind a spread-based strategy is that the MM waits for the price to deviate in such a
way that it leaves the window [at, at + b]. Let’s say the price suddenly drops below at and we get
pt = at�k� for some positive integer k such that k� < b. As soon as this happens some transactions
occur and the MM now has holdings of k↵ shares. That is, the MM will have purchased ↵ shares at
each of the prices at � �, at � 2�, . . . , at � k�. On the following round the MM updates his limit
order Lt+1

to offer to sell ↵ shares at each of the price levels at+b� (k�1)�, at+b� (k�2)�,
This gives a natural matching between shares that were bought and shares that are offered for sale,
with the sale price being exactly b higher than the purchased price. If, at a later time t0 > t, the price
rises so that pt0 � at + b+ � then all shares bought previously are sold at a profit of kb↵.

We now give a very useful lemma, that essentially shows that we can calculate the profit and loss
of a spread-based strategy on two factors: (a) how much the spread window moves throughout the
trading period, and (b) how far away the final price is from the initial price. A sketch of the proof is
provided, but the complete version is in the Appendix.

Lemma 1 The value of the portfolio of S(b) at time T can be bounded as

VT+1

� ↵

�

TX

t=1

b

2

|at+1

� at|� (|aT+1

� a
1

|+ b)2
!

PROOF:[Sketch] The proof of this lemma is quite similar to the proof of Theorem 2.1 in [4]. The
main idea is given in the intuitive explanation above: we can match pairs of shares that are bought

4

and sold at prices that are b apart, thus registering a profit of b for each such pair. We can relate
these matched pairs to the at’s, and the unmatched stock transactions to the difference |aT+1

� a
1

|,
yielding the stated bound. 2

In other words, the risk taken by all strategies is roughly the same (1
2

|pT+1

� p
1

|2 up to an addi-
tive constant in the quadratic term). But the revenue of the spread-based strategy scales with two
quantities: the size of the window b but also the total movement of the window. This raises an in-
teresting tradeoff in setting the b parameter, since we would like to make as much as possible on the
movement of the window, but by increasing b the window will get “pushed around” a lot less by the
fluctuating price.

We now make some convenient normalization. Since for every unit price change, the strategies trade
↵/� shares, in the rest of the paper, without loss of generality, we may assume that ↵ = 1 and � = 1

(by appropriately changing the unit of currency). The regret bounds for general ↵ and � scale up by
a factor of ↵

� .

3.2 Structural properties of spread-based strategies.

It is useful to prove certain properties about the proposed spread-based strategies.

Lemma 2 Consider any two strategies S(b) and S(b0) with b0 < b. Let [a0t, a
0
t + b0] and [at, at + b]

denote the intervals chosen by S(b) and S(b0) at time t respectively. Then for all t, we have [a0t, a
0
t+

b0] ⇢ [at, at + b].

PROOF:[Sketch] This is easy to prove by induction on t, via a simple case analysis on where pt lies
in relation to the windows [a0t, a0t + b0] and [at, at + b]. 2

Lemma 3 For any strategy S(b), its inventory at time t, Ht, equals a
1

� at.

PROOF:[Sketch] Again using case analysis on where pt lies in relation to the window [at, at + b],
we can show that Ht + at is an invariant. Thus, Ht + at = H

1

+ a
1

= a
1

, and hence Ht = a
1

� at.
2

The following corollary follows easily:

Corollary 1 For any round t, consider any two strategies S(b) and S(b0) with b0 < b, with invento-
ries Ht and H 0

t respectively. Then |Ht �H 0
t| b� b0.

PROOF: By Lemma 3 we have |Ht�H 0
t| = |a

1

�a0
1

+a0t�at| b�b0, since [a0
1

, a0
1

+b0] ⇢ [a
1

, a
1

+b]
and by Lemma 2 [a0t, a

0
t + b0] ⇢ [at, at + b]. 2

Definition 1 (�-bounded volatility) A price sequence p
1

, p
2

, . . . , pT is said to have �-bounded
volatility if for all t � 2, we have |pt � pt�1

| �.

We assume from now that the price sequence has �-bounded volatility. Suppose now that we have
a set B of N window sizes b, all bounded by B. In the rest of the paper, all vectors are in RN with
coordinates indexed by b 2 B. For every b 2 B, at the end of time period t, let its inventory be
Ht+1

(b), cash value be Ct+1

(b), and total value be Vt+1

(b). These quantities define the vectors
Ht+1

, Ct+1

and Vt+1

. The following lemma shows that the change in the total value of different
strategies in any round is similar.

Lemma 4 Define G = 2�B +�

2. In round t, H = minb2B{Ht(b)}. Then for any strategy S(b),
we have

|(Vt+1

(b)� Vt(b))� (H(pt � pt�1

))| G.

Thus, for any two window sizes b and b0, we have

|(Vt+1

(b)� Vt(b))� (Vt+1

(b0)� Vt(b
0
))| 2G.

PROOF:[Sketch] Since |pt � pt�1

| �, each strategy trades at most � shares, at prices between
pt�1

and pt. Next, by Corollary 1, for any strategy |Ht(b)�H| B. Using these bounds, and the
definitions of the total value, some calculations give the stated bounds. 2

5

4 A low regret meta-algorithm

Recall that we have a set B of N window sizes b, all bounded by B. We want to design a low-regret
algorithm that achieves almost as much payoff as that of the best strategy S(b) for b 2 B.

Consider the following meta-algorithm. Treat every strategy S(b) as an expert and run a regret min-
imizing algorithm for learning with expert advice (such as Multiplicative Weights [18] or Follow-
The-Perturbed-Leader [17]). The distributions generated by the regret minimizing algorithm are
treated as mixing weights for the different strategies, essentially executing each strategy scaled by
its current weight. In each round, the meta-algorithm restores the inventory of each strategy to the
correct state by additionally buying or selling enough shares so that its inventory is exactly what
it would have been had it run the different strategies with their present weights throughout. The
specific algorithm is given below.

Algorithm 2 Low regret meta-algorithm
1: Run every strategy S(b) in parallel so that at the end of each time period t, all trades made by

the strategies and the vectors Ht+1

, Ct+1

and Vt+1

2 RN can be computed.
2: Start a regret-minimizing algorithm A for learning from expert advice with one expert corre-

sponding to each strategy S(b) for b 2 B. Let the distribution over strategies generated by A at
time t be wt.

3: for t = 1, 2, . . . , T do
4: Execute any market orders from the previous period at the current market price pt so that the

inventory now equals Ht · wt. The cash value changes by �(Ht · (wt � wt�1

))pt.
5: Execute any limit orders from the previous period: a wt weighted combination of the limit

orders of the strategies S(b). The holdings change to Ht+1

· wt, and the cash value changes
by (Ct+1

� Ct) · wt.
6: For each strategy S(b) for b 2 B, set its payoff in round t to be Vt+1

(b) � Vt(b) and send
these payoffs to A.

7: Obtain the updated distribution wt+1

from A.
8: Place a market order to buy Ht+1

·(wt+1

�wt) shares in the next period, and a wt+1

weighted
combination of the limit orders of the strategies S(b).

9: end for

We now prove the following bound on the regret of the algorithm based on the regret of the under-
lying algorithm A. Recall from Lemma 4 the definition of G := 2�B +�

2.

Theorem 2 Assume that the price sequence has �-bounded volatity. The regret of the meta-
algorithm is bounded by

Regret(A) +

G

2

TX

t=1

kwt � wt+1

k
1

.

PROOF: The regret bound for A implies that
PT

t=1

(Vt+1

�Vt) ·wt � maxb2B VT (b)�Regret(A).
Lemma 5 shows that the final total value of the meta-algorithm is at least

PT
t=1

(Vt+1

� Vt) · wt �
G
2

PT
t=1

kwt � wt+1

k
1

. Thus, the regret of the algorithm is bounded as stated. 2

Lemma 5 In round t, the change in total value of the meta-algorithm equals

(Vt+1

� Vt) · wt +Ht · (wt � wt�1

)(pt�1

� pt).

Furthermore, |Ht · (wt � wt�1

)(pt�1

� pt)| G
2

kwt � wt+1

k
1

.

PROOF:[Sketch] The expression for the change in the total value of the meta-algorithm is a simple
calculation using the definitions. The second bound is obtained by noting that all the Ht(b)’s are
within B of each other by Corollary 1, and thus |Ht · (wt � wt�1

)| Bkwt � wt�1

k
1

, and
|pt�1

� pt| � by the bounded volatility assumption. 2

6

4.1 A low regret algorithm based on Mutiplicative Weights

Now we give a low regret algorithm based on the classic Multiplicative Weights (MW) algo-
rithm [18]. Call this algorithm MMMW (Market Making using Multiplicative Weights).

The algorithm takes parameters⌘t , for t = 1 , 2, . . . , T . It starts by initializing weightsw1(b) = 1 /N
for everyb ! B . In roundt, the algorithm updates the weights using the rule

wt +1 (b) := wt (b) exp(⌘t (Vt +1 (b) " Vt (b))) /Zt ,

for everyb ! B , whereZt is the normalization constant to makewt +1 a distribution.

Using Theorem 2, we can give the following bound on the regret of MMMW:

Theorem 3 Suppose we set⌘t = 1
2G min

! "
log(N)

t , 1
#

, for t = 1 , 2, . . . , T . Then MMMW has

regret bounded by13G
$

log(N)T .

PROOF:[Sketch] By Theorem 2, we need to bound#wt +1 " wt #1. The multiplicative update rule,
wt +1 (b) = wt (b) exp(⌘t (Vt +1 (b) " Vt (b))) /Zt , and the fact that by Lemma 4, the range of the
entries ofVt +1 " Vt is bounded by2G implies that#wt +1 " wt #1 $ 4⌘t G. Standard analysis for
the regret of the MW algorithm then gives the stated regret bound for MMMW.2

4.2 A low regret algorithm based on Follow-The-Perturbed-Leader

Now we give a low regret algorithm based on the Follow-The-Perturbed-Leader (FPL) algo-
rithm [17]. Call this algorithm MMFPL (Market Making using Follow-The-Perturbed-Leader). We
actually use a deterministic version of the algorithm which has the same regret bound.

The algorithm requires a parameter⌘. For everyb ! B , let p(b) be a sample from the exponential
distribution with mean1/⌘. The distributionwt is then set to be the distribution of the Òperturbed
leaderÓ, i.e.

wt (b) = Pr
p

[Vt (b) + p(b) % Vt (b0) + p(b0) & b0 ! B].

Using Theorem 2, we can give the following bound on the regret of MMFPL:

Theorem 4 Choose⌘ = 1
2G

"
log(N)

T . Then the regret of MMFPL is bounded by7G
$

log(N)T .

PROOF:[Sketch] Again we need to bound#wt +1 " wt #1. Kalai and Vempala [17] show that in the
randomized FPL algorithm, probability that the leader changes from roundt to t + 1 is bounded by
2⌘G. This implies that#wt +1 " wt #1 $ 4⌘G. Standard analysis for the regret of the FPL algorithm
then gives the stated regret bound for MMFPL.2

5 Experiments

We conducted experiments with stock price data obtained fromhttp://www.netfonds.no/ .
We downloaded data for the following stocks:MSFT, HPQandWMT. The data consists of trades
made throughout a given date in chronological order. We obtained data for these stocks for each of
the 5 days in the range May 6-10, 2013. The number of trades ranged from roughly 7,000 to 38,000.
The quoted prices are rounded to the nearest cent. Our spread-based strategies operate at the level of
a cent: i.e. the windows are speciÞed in terms of cents, and the buy/sell orders are set to 1 share per
cent outside the window. The class of spread-based strategies we used in our experiments correspond
to the following set of window sizes, quoted in cents:B = {1, 2, 3, 4, 5, 10, 20, 40, 80, 100}, so that
N = 10 andB = 100.

We implemented MMMW, MMFPL, simple Follow-The-Leader2 (FTL), and simple uniform av-
eraging over all strategies. We compared their performance to the best strategy in hindsight. For
MMFPL, wt was approximated by averaging100independently drawn initial perturbations.

2This algorithm simply chooses the best strategy in each round based on past performance without pertur-
bations.

7

