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Abstract

When working with network datasets, the theoretical framework of detection the-
ory for Euclidean vector spaces no longer applies. Nevertheless, it is desirable to
determine the detectability of small, anomalous graphs embedded into background
networks with known statistical properties. Casting the problem of subgraph de-
tection in a signal processing context, this article provides a framework and empir-
ical results that elucidate a “detection theory” for graph-valued data. Its focus is
the detection of anomalies in unweighted, undirected graphs through L1 properties
of the eigenvectors of the graph’s so-called modularity matrix. This metric is ob-
served to have relatively low variance for certain categories of randomly-generated
graphs, and to reveal the presence of an anomalous subgraph with reasonable re-
liability when the anomaly is not well-correlated with stronger portions of the
background graph. An analysis of subgraphs in real network datasets confirms the
efficacy of this approach.

1 Introduction

A graph G = (V,E) denotes a collection of entities, represented by vertices V , along with some
relationship between pairs, represented by edges E. Due to this ubiquitous structure, graphs are used
in a variety of applications, including the natural sciences, social network analysis, and engineering.
While this is a useful and popular way to represent data, it is difficult to analyze graphs in the
traditional statistical framework of Euclidean vector spaces.

In this article we investigate the problem of detecting a small, dense subgraph embedded into an
unweighted, undirected background. We use L1 properties of the eigenvectors of the graph’s modu-
larity matrix to determine the presence of an anomaly, and show empirically that this technique has
reasonable power to detect a dense subgraph where lower connectivity would be expected.

In Section 2 we briefly review previous work in the area of graph-based anomaly detection. In
Section 3 we formalize our notion of graph anomalies, and describe our experimental regime. In
Section 4 we give an overview of the modularity matrix and observe how its eigenstructure plays
a role in anomaly detection. Sections 5 and 6 respectively detail subgraph detection results on
simulated and actual network data, and in Section 7 we summarize and outline future research.
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2 Related Work

The area of anomaly detection has, in recent years, expanded to graph-based data [1, 2]. The work of
Noble and Cook [3] focuses on finding a subgraph that is dissimilar to a common substructure in the
network. Eberle and Holder [4] extend this work using the minimum description length heuristic to
determine a “normative pattern” in the graph from which the anomalous subgraph deviates, basing
3 detection algorithms on this property. This work, however, does not address the kind of anomaly
we describe in Section 3; our background graphs may not have such a “normative pattern” that
occurs over a significant amount of the graph. Research into anomaly detection in dynamic graphs
by Priebe et al [5] uses the history of a node’s neighborhood to detect anomalous behavior, but this
is not directly applicable to our detection of anomalies in static graphs.

There has been research on the use of eigenvectors of matrices derived from the graphs of interest
to detect anomalies. In [6] the angle of the principal eigenvector is tracked in a graph representing
a computer system, and if the angle changes by more than some threshold, an anomaly is declared
present. Network anomalies are also dealt with in [7], but here it is assumed that each node in the
network has some highly correlated time-domain input. Since we are dealing with simple graphs,
this method is not general enough for our purposes. Also, we want to determine the detectability of
small anomalies that may not have a significant impact on one or two principal eigenvectors.

There has been a significant amount of work on community detection through spectral properties of
graphs [8, 9, 10]. Here we specifically aim to detect small, dense communities by exploiting these
same properties. The approach taken here is similar to that of [11], in which graph anomalies are
detected by way of eigenspace projections. We here focus on smaller and more subtle subgraph
anomalies that are not immediately revealed in a graph’s principal components.

3 Graph Anomalies

As in [12, 11], we cast the problem of detecting a subgraph embedded in a background as one of
detecting a signal in noise. Let GB = (V,E) denote the background graph; a network in which
there exists no anomaly. This functions as the “noise” in our system. We then define the anoma-
lous subgraph (the “signal”) GS = (VS , ES) with VS ⊂ V . The objective is then to evaluate the
following binary hypothesis test; to decide between the null hypothesis H0 and alternate hypothesis
H1: {

H0 : The observed graph is “noise” GB

H1 : The observed graph is “signal+noise” GB ∪GS .

Here the union of the two graphs GB ∪GS is defined as GB ∪GS = (V,E ∪ ES).

In our simulations, we formulate our noise and signal graphs as follows. The background graph GB

is created by a graph generator, such as those outlined in [13], with a certain set of parameters. We
then create an anomalous “signal” graph GS to embed into the background. We select the vertex
subset VS from the set of vertices in the network and embed GS into GB by updating the edge set
to be E ∪ ES . We apply our detection algorithm to graphs with and without the embedding present
to evaluate its performance.

4 The Modularity Matrix and its Eigenvectors

Newman’s notion of the modularity matrix [8] associated with an unweighted, undirected graph G
is given by

B := A− 1
2|E|

KKT . (1)

Here A = {aij} is the adjacency matrix of G, where aij is 1 if there is an edge between vertex i
and vertex j and is 0 otherwise; and K is the degree vector of G, where the ith component of K
is the number of edges adjacent to vertex i. If we assume that edges from one vertex are equally
likely to be shared with all other vertices, then the modularity matrix is the difference between the
“actual” and “expected” number of edges between each pair of vertices. This is also very similar to
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Figure 1: Scatterplots of an R-MAT generated graph projected into spaces spanned by two eigenvec-
tors of its modularity matrix, with each point representing a vertex. The graph with no embedding
(a) and with an embedded 8-vertex clique (b) look the same in the principal components, but the
embedding is visible in the eigenvectors corresponding to the 18th and 21st largest eigenvalues (c).

the matrix used as an “observed-minus-expected” model in [14] to analyze the spectral properties of
random graphs.

Since B is real and symmetric, it admits the eigendecomposition B = UΛUT , where U ∈ R|V |×|V |

is a matrix where each column is an eigenvector of B, and Λ is a diagonal matrix of eigenvalues.
We denote by λi, 1 ≤ i ≤ |V |, the eigenvalues of B, where λi ≥ λi+1 for all i, and by ui the
unit-magnitude eigenvector corresponding to λi.

Newman analyzed the eigenvalues of the modularity matrix to determine if the graph can be split
into two separate communities. As demonstrated in [11], analysis of the principal eigenvectors of
B can also reveal the presence of a small, tightly-connected component embedded in a large graph.
This is done by projecting B into the space of its two principal eigenvectors, calculating a Chi-
squared test statistic, and comparing this to a threshold. Figure 1(a) demonstrates the projection of
an R-MAT Kronecker graph [15] into the principal components of its modularity matrix.

Small graph anomalies, however, may not reveal themselves in this subspace. Figure 1(b) demon-
strates an 8-vertex clique embedded into the same background graph. In the space of the two prin-
cipal eigenvectors, the symmetry of the projection looks the same as in Figure 1(a). The foreground
vertices are not at all separated from the background vertices, and the symmetry of the projection has
not changed (implying no change in the test statistic). Considering only this subspace, the subgraph
of interest cannot be detected reliably; its inward connectivity is not strong enough to stand out in
the two principal eigenvectors.

The fact that the subgraph is absorbed into the background in the space of u1 and u2, however, does
not imply that it is inseparable in general; only in the subspace with the highest variance. Borrowing
language from signal processing, there may be another “channel” in which the anomalous signal
subgraph can be separated from the background noise. There is in fact a space spanned by two
eigenvectors in which the 8-vertex clique stands out: in the space of the u18 and u21, the two
eigenvectors with the largest components in the rows corresponding to VS , the subgraph is clearly
separable from the background, as shown in Figure 1(c).

4.1 Eigenvector L1 Norms

The subgraph detection technique we propose here is based on L1 properties of the eigenvectors
of the graph’s modularity matrix, where the L1 norm of a vector x = [x1 · · · xN ]T is ‖x‖1 :=∑N

i=1 |xi|. When a vector is closely aligned with a small number of axes, i.e., if |xi| is only large for
a few values of i, then its L1 norm will be smaller than that of a vector of the same magnitude where
this is not the case. For example, if x ∈ R1024 has unit magnitude and only has nonzero components
along two of the 1024 axes, then ‖x‖1 ≤

√
2. If it has a component of equal magnitude along all

axes, then ‖x‖1 = 32. This property has been exploited in the past in a graph-theoretic setting, for
finding maximal cliques [16, 17].

This property can also be useful when detecting anomalous clustering behavior. If there is a subgraph
GS that is significantly different from its expectation, this will manifest itself in the modularity
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Figure 2: L1 analysis of modularity matrix eigenvectors. Under the null model, ‖u18‖ has the
distribution in (a). With an 8-vertex clique embedded, ‖u18‖1 falls far from its average value, as
shown in (b).

matrix as follows. The subgraph GS has a set of vertices VS , which is associated with a set of indices
corresponding to rows and columns of the adjacency matrix A. Consider the vector x ∈ {0, 1}N ,
where xi is 1 if vi ∈ VS and xi = 0 otherwise. For any S ⊆ V and v ∈ V , let dS(v) denote the
number of edges between the vertex v and the vertex set S. Also, let dS(S′) :=

∑
v∈S′ dS(v) and

d(v) := dV (v). We then have

‖Bx‖22 =
∑
v∈V

(
dVS

(v)− d(v)
d(VS)
d(V )

)2

, (2)

xT Bx = dVS
(VS)− d2(VS)

d(V )
, (3)

and ‖x‖2 =
√
|VS |. Note that d(V ) = 2|E|. A natural interpretation of (2) is that Bx repre-

sents the difference between the actual and expected connectivity to VS across the entire graph,
and likewise (3) represents this difference within the subgraph. If x is an eigenvector of B, then
of course xT Bx/(‖Bx‖2‖x‖2) = 1. Letting each subgraph vertex have uniform internal and
external degree, this ratio approaches 1 as

∑
v/∈VS

(dVS
(v)− d(v)d(VS)/d(V ))2 is dominated by∑

v∈VS
(dVS

(v)− d(v)d(VS)/d(V ))2. This suggests that if VS is much more dense than a typical
subset of background vertices, x is likely to be well-correlated with an eigenvector of B. (This be-
comes more complicated when there are several eigenvalues that are approximately dVS

(VS)/|VS |,
but this typically occurs for smaller graphs than are of interest.) Newman made a similar observa-
tion: that the magnitude of a vertex’s component in an eigenvector is related to the “strength” with
which it is a member of the associated community. Thus if a small set of vertices forms a commu-
nity, with few belonging to other communities, there will be an eigenvector well aligned with this
set, and this implies that the L1 norm of this eigenvector would be smaller than that of an eigenvector
with a similar eigenvalue when there is no anomalously dense subgraph.

4.2 Null Model Characterization

To examine the L1 behavior of the modularity matrix’s eigenvectors, we performed the following
experiment. Using the R-MAT generator we created 10,000 graphs with 1024 vertices, an average
degree of 6 (the result being an average degree of about 12 since we make the graph undirected),
and a probability matrix

P =
[

0.5 0.125
0.125 0.25

]
.

For each graph, we compute the modularity matrix B and its eigendecomposition. We then compute
‖ui‖1 for each i and store this value as part of our background statistics. Figure 2(a) demonstrates
the distribution of ‖u18‖1. The distribution has a slight left skew, but has a tight variance (a standard
deviation of 0.35) and no large deviations from the mean under the null (H0) model.

After compiling background data, we computed the mean and standard deviation of the L1 norms
for each ui. Let µi be the average of ‖ui‖1 and σi be its standard deviation. Using the R-MAT graph
with the embedded 8-vertex clique, we observed eigenvector L1 norms as shown in Figure 2(b). In
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the figure we plot ‖ui‖1 as well as µi, µi + 3σi and µi − 3σi. The vast majority of eigenvectors
have L1 norms close to the mean for the associated index. There are very few cases with a deviation
from the mean of greater than 3σ. Note also that µi decreases with decreasing i. This suggests that
the community formation inherent in the R-MAT generator creates components strongly associated
with the eigenvectors with larger eigenvalues.

The one outlier is u18, which has an L1 norm that is over 10 standard deviations away from the mean.
Note that u18 is the horizontal axis in Figure 1(c), which by itself provides significant separation
between the subgraph and the background. Simple L1 analysis would certainly reveal the presence
of this particular embedding.

5 Embedded Subgraph Detection

With the L1 properties detailed in Section 4 in mind, we propose the following method to determine
the presence of an embedding. Given a graph G, compute the eigendecomposition of its modularity
matrix. For each eigenvector, calculate its L1 norm, subtract its expected value (computed from the
background statistics), and normalize by its standard deviation. If any of these modified L1 norms
is less than a certain threshold (since the embedding makes the L1 norm smaller), H1 is declared,
and H0 is declared otherwise. Pseudocode for this detection algorithm is provided in Algorithm 1.

Algorithm 1 L1SUBGRAPHDETECTION

Input: Graph G = (V,E), Integer k, Numbers `1MIN, µ[1..k], σ[1..k]
B ← MODMAT(G)
U ← EIGENVECTORS(B, k) 〈〈k eigenvectors of B〉〉
for i← 1 to k do

m[i]← (‖ui‖1 − µ[i])/σ[i]
if m[i] < `1MIN then

return H1 〈〈declare the presence of an embedding〉〉
end if

end for
return H0 〈〈no embedding found〉〉

We compute the eigenvectors of B using eigs in MATLAB, which has running time O(|E|kh +
|V |k2h + k3h), where h is the number of iterations required for eigs to converge [10]. While
the modularity matrix is not sparse, it is the sum of a sparse matrix and a rank-one matrix, so we
can still compute its eigenvalues efficiently, as mentioned in [8]. Computing the modified L1 norms
and comparing them to the threshold takes O(|V |k) time, so the complexity is dominated by the
eigendecomposition.

The signal subgraphs are created as follows. In all simulations in this section, |VS | = 8. For each
simulation, a subgraph density of 70%, 80%, 90% or 100% is chosen. For subraphs of this size and
density, the method of [11] does not yield detection performance better than chance. The subgraph
is created by, uniformly at random, selecting the chosen proportion of the

(
8
2

)
possible edges. To

determine where to embed the subgraph into the background, we find all vertices with at most 1, 3
or 5 edges and select 8 of these at random. The subgraph is then induced on these vertices.

For each density/external degree pair, we performed a 10,000-trial Monte Carlo simulation in which
we create an R-MAT background with the same parameters as the null model, embed an anomalous
subgraph as described above, and run Algorithm 1 with k = 100 to determine whether the embed-
ding is detected. Figure 3 demonstrates detection performance in this experiment. In the receiver
operating characteristic (ROC), changing the L1 threshold (`1MIN in Algorithm 1) changes the po-
sition on the curve. Each curve corresponds to a different subgraph density. In Figure 3(a), each
vertex of the subgraph has 1 edge adjacent to the background. In this case the subgraph connectivity
is overwhelmingly inward, and the ROC curve reflects this. Also, the more dense subgraphs are
more detectable. When the external degree is increased so that a subgraph vertex may have up to
3 edges adjacent to the background, we see a decline in detection performance as shown in Figure
3(b). Figure 3(c) demonstrates the additional decrease in detection performance when the external
subgraph connectivity is increased again, to as much as 5 edges per vertex.
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(a) (b) (c)

Figure 3: ROC curves for the detection of 8-vertex subgraphs in a 1024-vertex R-MAT background.
Performance is shown for subgraphs of varying density when each foreground vertex is connected
to the background by up to 1, 3 and 5 edges in (a), (b) and (c), respectively.

6 Subgraph Detection in Real-World Networks

To verify that we see similar properties in real graphs that we do in simulated ones, we analyzed
five data sets available in the Stanford Network Analysis Package (SNAP) database [18]. Each net-
work is made undirected before we perform our analysis. The data sets used here are the Epinions
who-trusts-whom graph (Epinions, |V | = 75,879, |E| = 405,740) [19], the arXiv.org collaboration
networks on astrophysics (AstroPh, |V | = 18,722, |E| = 198,050) and condensed matter (CondMat,
|V |=23,133, |E|=93,439) [20], an autonomous system graph (asOregon, |V |=11,461, |E|=32,730)
[21] and the Slashdot social network (Slashdot, |V |=82,168, |E|=504,230) [22]. For each graph, we
compute the top 110 eigenvectors of the modularity matrix and the L1 norm of each. Comparing
each L1 sequence to a “smoothed” (i.e., low-pass filtered) version, we choose the two eigenvec-
tors that deviate the most from this trend, except in the case of Slashdot, where there is only one
significant deviation.

Plots of the L1 norms and scatterplots in the space of the two eigenvectors that deviate most are
shown in Figure 4. The eigenvectors declared are highlighted. Note that, with the exception of the
asOregon, we see as similar trend in these networks that we did in the R-MAT simulations, with
the L1 norms decreasing as the eigenvalues increase (the L1 trend in asOregon is fairly flat). Also,
with the exception of Slashdot, each dataset has a few eigenvectors with much smaller norms than
those with similar eigenvalues (Slashdot decreases gradually, with one sharp drop at the maximum
eigenvalue).

The subgraphs detected by L1 analysis are presented in Table 1. Two subgraphs are chosen for each
dataset, corresponding to the highlighted points in the scatterplots in Figure 4. For each subgraph
we list the size (number of vertices), density (internal degree divided by the maximum number of
edges), external degree, and the eigenvector that separates it from the background. The subgraphs
are quite dense, at least 80% in each case.

To determine whether a detected subgraph is anomalous with respect to the rest of the graph, we
sample the network and compare the sample graphs to the detected subgraphs in terms of density
and external degree. For each detected subgraph, we take 1 million samples with the same number
of vertices. Our sampling method consists of doing a random walk and adding all neighbors of each
vertex in the path. We then count the number of samples with density above a certain threshold
and external degree below another threshold. These thresholds are the parenthetical values in the
4th and 5th columns of Table 1. Note that the thresholds are set so that the detected subgraphs
comfortably meet them. The 6th column lists the number of samples out of 1 million that satisfy
both thresholds. In each case, far less than 1% of the samples meet the criteria. For the Slashdot
dataset, no sample was nearly as dense as the two subgraphs we selected by thresholding along the
principal eigenvector. After removing samples that are predominantly correlated with the selected
eigenvectors, we get the parenthetical values in the same column. In most cases, all of the samples
meeting the thresholds are correlated with the detected eigenvectors. Upon further inspection, those
remaining are either correlated with another eigenvector that deviates from the overall L1 trend, or
correlated with multiple eigenvectors, as we discuss in the next section.
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(a) Epinions L1 norms (b) Epinions scatterplot

(c) AstroPh L1 norms (d) AstroPh scatterplot

(e) CondMat L1 norms (f) CondMat scatterplot

(g) asOregon L1 norms (h) asOregon scatterplot

(i) Slashdot L1 norms (j) Slashdot scatterplot

Figure 4: Eigenvector L1 norms in real-world network data (left column), and scatterplots of the
projection into the subspace defined by the indicated eigenvectors (right column).
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dataset eigenvector subgraph
size

subgraph
(sample)
density

subgraph
(sample)

external degree

# samples
that meet
threshold

Epinions u36 34 80% (70%) 721 (1000) 46 (0)
Epinions u45 27 83% (75%) 869 (1200) 261 (6)
AstroPh u57 30 100% (90%) 93 (125) 853 (0)
AstroPh u106 24 100% (90%) 73 (100) 944 (0)

CondMat u29 19 100% (90%) 2 (50) 866 (0)
CondMat u36 20 83% (75%) 70 (120) 1596 (0)
asOregon u6 15 96% (85%) 1089 (1500) 23 (0)
asOregon u32 6 93% (80%) 177 (200) 762 (393)
Slashdot u1 > 0.08 36 95% (90%) 10570 (∞) 0 (0)
Slashdot u1 > 0.07 51 89% (80%) 12713 (∞) 0 (0)

Table 1: Subgraphs detected by L1 analysis, and a comparison with randomly-sampled subgraphs
in the same network.

Figure 5: An 8-vertex clique that does not create an anomalously small L1 norm in any eigenvector.
The scatterplot looks similar to one in which the subgraph is detectable, but is rotated.

7 Conclusion

In this article we have demonstrated the efficacy of using eigenvector L1 norms of a graph’s mod-
ularity matrix to detect small, dense anomalous subgraphs embedded in a background. Casting the
problem of subgraph detection in a signal processing context, we have provided the intuition behind
the utility of this approach, and empirically demonstrated its effectiveness on a concrete example:
detection of a dense subgraph embedded into a graph generated using known parameters. In real
network data we see trends similar to those we see in simulation, and examine outliers to see what
subgraphs are detected in real-world datasets.

Future research will include the expansion of this technique to reliably detect subgraphs that can be
separated from the background in the space of a small number of eigenvectors, but not necessarily
one. While the L1 norm itself can indicate the presence of an embedding, it requires the subgraph to
be highly correlated with a single eigenvector. Figure 5 demonstrates a case where considering mul-
tiple eigenvectors at once would likely improve detection performance. The scatterplot in this figure
looks similar to the one in Figure 1(c), but is rotated such that the subgraph is equally aligned with
the two eigenvectors into which the matrix has been projected. There is not significant separation in
any one eigenvector, so it is difficult to detect using the method presented in this paper. Minimizing
the L1 norm with respect to rotation in the plane will likely make the test more powerful, but could
prove computationally expensive. Other future work will focus on developing detectability bounds,
the application of which would be useful when developing detection methods like the algorithm
outlined here.
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