A Parameter-free Hedging Algorithm

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper Supplemental

Authors

Kamalika Chaudhuri, Yoav Freund, Daniel J. Hsu

Abstract

We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large. Previous algorithms for learning in this framework have a tunable learning rate parameter, and a major barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly when the number of actions is large. In this paper, we offer a clean solution by proposing a novel and completely parameter-free algorithm for DTOL. In addition, we introduce a new notion of regret, which is more natural for applications with a large number of actions. We show that our algorithm achieves good performance with respect to this new notion of regret; in addition, it also achieves performance close to that of the best bounds achieved by previous algorithms with optimally-tuned parameters, according to previous notions of regret.