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Abstract

We propose a family of kernels for structured objects which is based on the bag-of-
components paradigm. However, rather than decomposing each complex object
into the single histogram of its components, we use for each object a family of
nested histograms, where each histogram in this hierarchy describes the object
seen from an increasingly granular perspective. We use this hierarchy of his-
tograms to define elementary kernels which can detect coarse and fine similarities
between the objects. We compute through an efficient averaging trick a mixture
of such specific kernels, to propose a final kernel value which weights efficiently
local and global matches. We propose experimental results on an image retrieval
experiment which show that this mixture is an effective template procedure to be
used with kernels on histograms.

1 Introduction

Kernel methods have shown to be competitive with other techniques in classification or regression
tasks where the input data lie in a vector space. Arguably, this success rests on two factors: first,
the good ability of kernel algorithms, such as the support vector machine, to generalize and pro-
vide a sparse formulation for the underlying learning problem; second, the capacity of nonlinear
kernels, such as the polynomial and gaussian kernels, to quantify meaningful similarities between
vectors, notably non-linear correlations between their components. Using kernel machines with
non-vectorial data (e.g., in bioinformatics, image and text analysis or signal processing) requires
more arbitrary choices, both to represent the objects in a malleable form, and to choose suitable
kernels on these representations. The challenge of using kernel methods on real-world data has thus
recently fostered many proposals for kernels on complex objects, notably strings, trees, images or
graphs to cite a few.

In common practice, most of these objects can be regarded as structured aggregates of smaller com-
ponents, and the coarsest approach to study such aggregates is to consider them directly as bags
of components. In the field of kernel methods, such a representation has not only been widely
adopted (Haussler, 1999; Joachims, 2002; Scholkopf et al., 2004), but it has also spurred the pro-
posal of kernels better suited to the geometry of the underlying histograms (Kondor & Jebara, 2003;
Lafferty & Lebanon, 2005; Hein & Bousquet, 2005; Cuturi et al., 2005). However, one of the draw-
backs of the bag-of-components representation is that it implicitly assumes that each component
sampled in the object has been generated independently from an identical distribution. While this
viewpoint may translate into adequate properties for some learning tasks, such as translation or ro-
tation invariance when using histograms of colors to manipulate images (Chapelle et al., 1999), it
may however appear too restrictive when such a strong invariance may just be too coarse to be of
practical use.



A possible way to cope with this limitation is to expand ari#lty the size of the components’
space, either by considering families of larger components to take into account more contextual in-
formation, or by considering histograms which index both components and their possible location
in the object (Ratsch & Sonnenburg, 2004). As one would expect, these histograms are usually
sparse and need to be regularized using ad-hoc rules and prior knowledge (Leslie et al., 2003) be-
fore being directly compared using kernels on histograms. For sequential data, other state-of-the-art
methods compute an optimal alignment between the sequences based on elementary operations such
as substitutions, deletions and insertions of components. Such alignment scores may yield positive
definite (p.d.) kernels if particular care is taken to adapt them (Vert et al., 2004) and have shown very
competitive performances. However, their computational cost can be prohibitive when dealing with
large datasets, and can only be applied to sequential data. Following these contributions, we propose

Figure 1: From the bag of components representation to a seistéd bags, using a set of labels.

in this paper new families of kernels which can be easily tuned to detect both coarse and fine simi-
larities between the objects, in a range spanned from kernels which only consider coarse histograms
to kernels which only detect strict local matches. To size such types of similarities between two
objects, we elaborate on the elementary bag-of-components perspective to consider instead families
of nested histograms (indexed by a set of hierarchical labels to be defined) to describe each object.
In this framework, the root label corresponds to the global representation introduced before, while
longer labels represent a specific condition under which the components have been sampled. We
then define kernels that take into account mixtures of similarities, spanning from detailed resolu-
tions which only compare the smallest bags to the coarsest one. This trade-off between fine and
coarse perspectives sets an averaging framework to define kernels, which we introduce formally in
Section 2. This theoretical framework would not be tractable without an efficient factorization de-
tailed in Section 3 which yields computations which grow linearly in time and space with respect
to the number of labels to evaluate the value of the kernel. We then provide experimental results in
Section 4 on an image retrieval task which shows that the methodology improves the performance
of kernel based state-of-the art techniques in this field with a low extra computational cost.

2 Kernels Defined through Hierarchies of Histograms

In the kernel literature, structured objects are usually represented as histograms of components, e.g.,
images as histograms of colors and/or features, texts as bags of words and sequences as histograms
of letters orn-grams. The obvious drawback of this representation is that it usually loses all the
contextual information which may be useful to characterize each sampled component in the original
object. One may instead create families of histograms, indexed by specific sampling conditions:

e Inimage analysis, create color or feature histograms following a prior partition of the image
into predefined patches, as in (Grauman & Darrell, 2005). Another possibility would be to
define families of histograms, all for the same image, which would consider increasingly
granular discretizations of the color space.

e In sequence analysis, extract local histograms which may correspond to predefined regions
of the original sequence, as in (Matsuda et al., 2005). A different option would be to asso-
ciate to each histogram a context of arbitrary length, e.g. by considering the 26 histogram
of letters sampled just after the lettgrd, B, - - - , Z}, or the26 x 26 histograms of letters
after context{ AA, AB,--- ,ZZ}.



e Intext analysis, use histograms of words found after grammatical categories of increasing
complexity, such as verbs, nouns, articles or adverbs.

e For synchronous time series (e.g. financial time series or gene expression profiles), define
a reference series (e.g. an index or a specific gene) and decompose each of the subsequent
series into histograms of values conditioned to the value of the reference series.

We write £ for an arbitrary index set to label such specific histograms. Structured objects are thus

represented as a familyof M (X) déf(Mj"r(X))ﬁ, that isp = {4 }rec Where for eacht € £, p,

is a bounded measure 8f} (X). We write|y| for 3°,_ - ||,

2.1 Local Similarities Between Measures

To compare two objects under the light of any sampling conditjdinat is comparing their respec-

tive decompositions as measuggsand:;, we make use of an arbitrary p.d. keriedn MQ(X)

to which we will refer as the base kernel throughout the paper. For interpretation purposes only, we
will assume in the following sections thatis an infinitely divisible kernel which can be written

ask = e >%, X\ > 0, wherey is a negative definite (Berg et al., 1984) kernelMtj(X), or
equivalently— is a conditionally p.d. kernel. Note also thahas to be p.d. not only on probabil-

ity measures, but on any bounded measure. For two elemeatof M, (X) and a given element

t € L, the kernel

7y def /

ke (p, 1) = k(e py)
quantifies the similarity of: andx’ by measuring how similarly their components were observed
with respect to label. For two different labels andt of £, k, andk; can be associated through
polynomial combinations with positive coefficients to result in new kernels, notably theik sty
or their productk,k;. This is particularly adequate if some complementarity is assumed betwveen
andt, so that their combination can provide new insights for a given learning task. If on the contrary
these labels are assumed to be similar, then they can be regarded as a grouped lae} and
result in the kernel

Fogsyugey (s 1) = K + s il + 1f),
which will measure the similarity ofn andm’ underboth s or ¢ labels. Let us give an intuition
for this definition by considering two textd, B built up with words from a dictionarfp. As an
alternative to the general histograms of wodsandé? of M_l; (D), one may consider for instance
04 9néay andéB,, ani’ay, the respective histograms of words that follow the warda andmay in
texts A and B respectively. If one considers thah andnmay are different words, then the following

kernel quantifies the similarity of and B taking advantage of this difference:
Fgcary {may} (A, B) = k(0ian, 05, X k(Oinay: Oy

may’ “may/ *
If on the contrary one decides than andmay are equivalent, an adequate kernel would first

merge the histograms, and then compare them:
k{canmay} (A, B) = k(egn"’ enﬂlayv G(gn"’ en?a )

The previous formula can be naturally extended to define kernels indexed dh asétof grouped
labels, through

def def def
kr (. 1) = & (ur, ply) , where pp <> ™y and pf < .
teT teT

2.2 Resolution Specific Kernels

Having defined a family of kernelsk,, T C £} which can detect conditional similarities between
two elements of\/ - (X") given a subset’ of £, we define in this section different ways to combine
them to obtain a kernel which can take into account all of their histogramg? beta finite partition

of £, that is a finite familyP = (T, ...,T;,) of sets of£, such tha; N T, = @if 1 <i < j<n
and{J;_; T; = L. We writeP(£) for the set of all partitions of. Consider now the kernel defined
by a partitionP as

kP(M?/J’/) défHkTi(Mvp’/)' (1)
1=1



The kernelp quantifies the similarity between two objects by detecting their joint similarity under

all possible labels of, assuminga priori that certain labels can be grouped together, following the
subsetsl; enumerated in the partitioR. Note that there is some arbitrary in this definition since

a simple multiplication of base kernels; is used to definép, rather than any other polynomial
combination. We follow in that sense the convolution kernels (Haussler, 1999) approach, and indeed,
for each partitionP, kp can be regarded as a convolution kernel. More precisely, the multiplicative
structure of Equation (1) quantifies how similar two objects are given a parfitjan a way that
imposes for the objects to be similar according to all subiBetH the base kernel can be written

ask = e~ »¥, wherey is a negative definite kernel, thép can be expressed as the exponential of
minus

Yp () S o () = > i, i),
=1 1=1

a quantity which penalizes local differences between the decompositignsod 1./ over £, as
opposed to the coarsest approach where {L£} and onlyy (>, 114, >, ;) is considered.

Figure 2: A useful set of label§ for images which would focus on pixel localization can be rep-
resented by a grid, such as thex 8 one represented above. In this cdgecorresponds to thé?
windows presented in the left imagg; to the16 larger squares obtained when groupingmall
windows, P; to the image divided intd equal parts and, is simply the whole image. Any partition

P of the image which complies with the hierarchy in the example above, can in turn be used to
represent an image as a family of sub-probability measures, which reduces in the case of two-color
images to binary histograms as illustrated in the right-most image. For two images, these respective
histograms can be directly compared through the kerpel
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As illustrated in Figure 2, where images are summarized through histograms indexed by patches, a
partition of £ reflects a given belief on how patches may or may not be associated or split to focus
on local dissimilarities. Hence, all partitions contained in the/3gf) of all possible partition's

are not likely to be equally meaningful given that some labels may a natural form of grouping. If
the index is built to highlight differences in locations, one would naturally favor mergers between
neighboring indexes. If one uses a Markovian analysis, that is consider histograms of components
conditioned by contexts, a natural way to group contexts would be to group them according to their
semantic or grammatical content for text analysis or according to their suffix for sequence analysis.

Such meaningful partitions can be intuitively obtained when a hierarchical structure which groups
elements of_ together is known a priori. A hierarchy afy such as the triadic hierarchy shown in
Figure 3, is a family

(Po)io ={Po=A{L},..Pp = {{t}.te L}}
of partitions of£. To provide a hierarchical information, the famil,)?_ is such that any subset
present in a partitiorP; is strictly included in a (unique by definition of a partition) subset from
the coarser partitior?;_;. This is equivalent to stating that each subifein a partition P; is
divided in P11 as a partition ofl" which is notT itself. We write s(T') for this partition (e.g.,
in Figure 3,s(1) = {11,---,19}) and name its elements the siblings®f Consider now the
subsetPp C P(L) of all partitions of £ obtained by using only sets contained in the collection

pp Y U, Ps, namelyPp W ipeP(L)st.¥T e P,Te PP}. The setPp contains both the
coarsest and the finest resolutions, respectiglgnd Pp, but also all variable resolutions for sets
enumerated itP”, as can be seen for instance in the third image of Figure 2.

P (L) is quite a big space, sincedfis a finite set of cardinal, the cardinal of the set of partitions is known
as the Bell Number of orderwith B, = 1 3% »o o~ et
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Figure 3: A hierarchy generated by two successive triadititjoars.

2.3 Averaging Resolution Specific Kernels

Each partitionP contained inPp provides a resolution to compare two objects, which generates

a large family of kernelé:» when P spansPp. Some partitions are likely to be better suited for
certain tasks, which may call for an efficient estimation scheme to select an optimal partition for
a given task. This would be similar in spirit to estimating a maximum a posteriori model for the
data and use it consequently to compare the objects. We take in this section a different direction
which has a more Bayesian flavor by considering an averaging of such kernels based on a prior
on the set of partitions. In practice, this averaging favours objects which share similarities under a
large collection of resolutions, and may also be interpreted as a Bayesian averaging of convolution
kernels (Haussler, 1999).

Definition 1 Let £ be an index set endowed with a hierar¢#;)?_,, 7 be a prior measure on the

corresponding set of partitior8p andk a base kernel o/ (X') x M% (X). The averaged kernel
kroOnMg(X) x M.(X) is defined as

krr(,uvﬂ/) = Z ﬂ-(P) kp(,u,/t/). (2)
Pe Pp

As can be observed in Equation (2), the kernel automatically detects in the range of all partitions
the ones which provide a good match between the compared objects, to increase subsequently the
resulting similarity score. Also note that in an image-analysis context, the pyramid-matching ker-
nel proposed in (Grauman & Darrell, 2005) only considers the original partitions of the hierarchy
(Py)L_,, while Equation (2) considers all possible partitionsf. This can be carried out with

little cost if an adequate set of priords selected as seen below.

3 Kernel Computation

We provide in this section hierarchiéB;)?_ and priorsr for which the computation o is both
meaningful and tractable, yielding namely a computational time to calcilatghich is loosely
upperbounded by x card £ x ¢(k) wherec(k) is the time required to compute the base kernel.

3.1 Partitions Generated by Branching Processes

All partitions P of Pp can be generated through the following rule, starting from the initial root
partition P := P, = {L}. For each seT of P:

1. either leave the set as it is Mwith probabilityl — e,
2. either replace it by its siblings i5(T") with probabilitye, and reapply this rule to each
sibling unless they belong to the finest partitiBp.
The resulting prior fofP, depends on the overall coarseness of the considered partitions, and can be
tuned through parametets to favor adaptively coarse or fine partitions. For a partita Pp,

T(P) = [lre p(1 —€7) HTE IOD(ET), where the seP = {T e PPst.3Ve P,V C T} gathers

all coarser sets belonging to coarser resolutions thaand can be regarded as the set of all ancestors
in PP of sets enumerated iR.



3.2 Factorization of k.
We use the branching-process prior can be used to factorize the formula in Equation (2):

Proposition 2 For two elements., ' of M (X), define forT' spanning recursively all sets con-
tained inPp, Pp_1, ..., Py the quantityK'+ below; thenk, (i, ') = K.

Kr =1 —ep)kr(p, 1) +er H Ky.
Ue s(T)

'Fr)rr%ogroof follows from a factorization which K,
uses the branching process prior used for the -
tree generation, and can be derived from the -
proof of (Catoni, 2004, Proposition 5.2). The
opposite figure underlines the importance of .
incorporating to each nod&; a We|ghted """
product of the sibling kernel evaluatiohg;.
The update rule for the computation &f
takes into account the branching process prior.::
by weighting the kernét; with all valuesk, '
obtained for finer resolutions in s(T).

|

If the hierarchy ofZ is such that the cardinality ofT") is fixed to a constant for any sefl’, typically

«a = 4 for images in the case described in Figure 2, then the computatibp isfupperbounded

by (aP*1 — 1)e(k). This complexity is also upperbounded by the total amount of components
considered in the compared objects, as in (Cuturi & Vert, 2005) for instance.

er)k(ur, pr) +er [1 Ky,

3.3 Choosing the Base Kernel

Any kernel onM_l;(X) can be used to comply with the terms of Definition 1 and apply an average
scheme on families of measures. We also note that an even more general formulation can be obtained
by using a different kernét, for each labet of £, without altering the overall applicability of the
factorization above. However, we only consider in this discussion a unique dhtucall ¢t € L.

First, one can note that kernels such as the information diffusion kernel (Lafferty & Lebanon, 2005)
and variance based kernels (Kondor & Jebara, 2003; Cuturi et al., 2005) may not work in this
setting since they are not p.d., nor sometimes defined, on the thé(ﬂ(). The most adequate
geometry ofMi(X), following the denormalization scheme proposed in (Amari & Nagaoka, 2001,
p.47), may arguably be derived from the Riemannian embedding /v, where the Euclidian
distance between two measures in this representation is equal to the geodesic distanceibetween
and’ in ME’F(X) endowed with the Fisher metric, as expressedjf) below. More generally,

one can consider the whole family of kernels for bounded measures described in (Hein & Bousquet,
2005) to choose the base kerkehamely the family of Hilbertian metricg such thatc = e Y,

We thus use in our experiments the Jensen divergencg?tbistance, the total variation, and two
variations of the Hellinger distance:

o (00N h(0)+h(®) NN (00— 0)?
wJD(H,H)—h< 9 )_ 9 a¢x2(979)_¥W’

Yrv(6,0') ZIH 0il,  Ym,(0,0) Z|\/_ VOI?, u, (0,6) = Z|\/_ V.

4 Experiments in Image Retrieval

We present in this section experiments inspired by the image retrieval task first considered
in (Chapelle et al., 1999) and reused in (Hein & Bousquet, 2005). Our dataset was also extracted
from the Corel Stock database and includes 12 families of labeled images, each class containing
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Figure 4: Misclassification rate on the corel experiment, using the Hellifgatistance between

histograms coupled with one-vs-all SVM classificati@n & 100) as a function of\ ande. %

is taken in{2712 ... 22} while £ spans{0,0.1,---,0.9,1}. e controls the granularity of the
averaging kernel, ranging from the coarsest perspective () when only the global histogram is
used, to the finest one & 1) when only the finest histograms are considered. Dark values represent
error rates which argreateror equal to 24%. The central values are roughly 14.5% while the best
value obtained in the columas= 0 ande = 1 are 18.4% and 17.3% respectively

100 color images 0256 x 384 pixels. The families depict images béars, African specialty an-
imals, monkeys, cougars, fireworks, mountains, office interiors, bonsais, sunsets, clouds\capes
rocks and gemsThe database is randomly split into balanced sets of 800 training images and 400
test images. The task consists in classifying the test images with the rule learned by training 12
one-versus-all SVM's on the learning fold. Note that previous work conducted in (Chapelle et al.,
1999) illustrates the competitiveness of SVM’s in this context over other algorithms such as nearest
neighbors. Our results are averaged over 3 random splits, using the Spider toolbox.

We used 9 bits for the color of each pixel to reduce the size of the RGB color spaée=tc;12

from the original set oR56% = 16, 777,216 colors, and we defined centered gridsiod? = 16

and4® = 64 local patches. We provide results for each of the 5 considered kernels and for each
considered depth ranging from 1 to 3. Figure 5 presenits = 5 x 3 plots, where each plot displays

the misclassification rate as a function of the width param?tamd the branching process prior

set over all nodes of the tree. The constant C is set to 100, but other choices for C (1000 and 10)
gave comparable plots, although a bit different in shape. By considering valaearmjing from0

to 1, we aim at giving a sketch of the robustness of the averaging approach, since the SVM’s seem
to perform better whefi < ¢ < 1 for a large span ok values. For a better understanding of these
plots, the reader may refer to Figure 4 which focuseggnandD = 2, noting that the color scales

used for Figures 4 and 5 are the same. Finally, the Gaussian kernel was also tested but its very poor
performance (with error rate above 22% for all parameters) illustrates once more that the Gaussian
kernel is usually a poor choice to compare histograms directly.

5 Discussion

The computation of averaged kernels can be performed almost as fast as kernels which only rely
on fine resolutions, which along with their robustness and improved performance might advocate
their use, notably as an extension of kernels based on arbitrary partitions (Grauman & Darrell, 2005;
Matsuda et al., 2005). Principled ways of estimating in a semi-supervised setting batte, or
preferably localized priora ande7, T € PP, might give them an additional edge. This is a topic

of current research, and we suggest to set these parameters through cross-validation at the moment,
while H; seems to be a reasonable choice to define the base kernel. Our approach is related to
the Multiple Kernel Learning framework (Lanckriet et al., 2004), although we do not aim here at
learning linear combinations of the kernéls, but rather start from an hierarchical belief on them

to propose an algebraic combination.
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Figure 5: Error-rate results for different kernels and dsptte displayed in the same way that in
Figure 4, using the same colorscale across experiments.
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