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Abstract

We propose a family of kernels for structured objects which is based on the bag-of-
components paradigm. However, rather than decomposing each complex object
into the single histogram of its components, we use for each object a family of
nested histograms, where each histogram in this hierarchy describes the object
seen from an increasingly granular perspective. We use this hierarchy of his-
tograms to define elementary kernels which can detect coarse and fine similarities
between the objects. We compute through an efficient averaging trick a mixture
of such specific kernels, to propose a final kernel value which weights efficiently
local and global matches. We propose experimental results on an image retrieval
experiment which show that this mixture is an effective template procedure to be
used with kernels on histograms.

1 Introduction

Kernel methods have shown to be competitive with other techniques in classification or regression
tasks where the input data lie in a vector space. Arguably, this success rests on two factors: first,
the good ability of kernel algorithms, such as the support vector machine, to generalize and pro-
vide a sparse formulation for the underlying learning problem; second, the capacity of nonlinear
kernels, such as the polynomial and gaussian kernels, to quantify meaningful similarities between
vectors, notably non-linear correlations between their components. Using kernel machines with
non-vectorial data (e.g., in bioinformatics, image and text analysis or signal processing) requires
more arbitrary choices, both to represent the objects in a malleable form, and to choose suitable
kernels on these representations. The challenge of using kernel methods on real-world data has thus
recently fostered many proposals for kernels on complex objects, notably strings, trees, images or
graphs to cite a few.

In common practice, most of these objects can be regarded as structured aggregates of smaller com-
ponents, and the coarsest approach to study such aggregates is to consider them directly as bags
of components. In the field of kernel methods, such a representation has not only been widely
adopted (Haussler, 1999; Joachims, 2002; Schölkopf et al., 2004), but it has also spurred the pro-
posal of kernels better suited to the geometry of the underlying histograms (Kondor & Jebara, 2003;
Lafferty & Lebanon, 2005; Hein & Bousquet, 2005; Cuturi et al., 2005). However, one of the draw-
backs of the bag-of-components representation is that it implicitly assumes that each component
sampled in the object has been generated independently from an identical distribution. While this
viewpoint may translate into adequate properties for some learning tasks, such as translation or ro-
tation invariance when using histograms of colors to manipulate images (Chapelle et al., 1999), it
may however appear too restrictive when such a strong invariance may just be too coarse to be of
practical use.



A possible way to cope with this limitation is to expand artificially the size of the components’
space, either by considering families of larger components to take into account more contextual in-
formation, or by considering histograms which index both components and their possible location
in the object (Rätsch & Sonnenburg, 2004). As one would expect, these histograms are usually
sparse and need to be regularized using ad-hoc rules and prior knowledge (Leslie et al., 2003) be-
fore being directly compared using kernels on histograms. For sequential data, other state-of-the-art
methods compute an optimal alignment between the sequences based on elementary operations such
as substitutions, deletions and insertions of components. Such alignment scores may yield positive
definite (p.d.) kernels if particular care is taken to adapt them (Vert et al., 2004) and have shown very
competitive performances. However, their computational cost can be prohibitive when dealing with
large datasets, and can only be applied to sequential data. Following these contributions, we propose
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Figure 1: From the bag of components representation to a set ofnested bags, using a set of labels.

in this paper new families of kernels which can be easily tuned to detect both coarse and fine simi-
larities between the objects, in a range spanned from kernels which only consider coarse histograms
to kernels which only detect strict local matches. To size such types of similarities between two
objects, we elaborate on the elementary bag-of-components perspective to consider instead families
of nested histograms (indexed by a set of hierarchical labels to be defined) to describe each object.
In this framework, the root label corresponds to the global representation introduced before, while
longer labels represent a specific condition under which the components have been sampled. We
then define kernels that take into account mixtures of similarities, spanning from detailed resolu-
tions which only compare the smallest bags to the coarsest one. This trade-off between fine and
coarse perspectives sets an averaging framework to define kernels, which we introduce formally in
Section 2. This theoretical framework would not be tractable without an efficient factorization de-
tailed in Section 3 which yields computations which grow linearly in time and space with respect
to the number of labels to evaluate the value of the kernel. We then provide experimental results in
Section 4 on an image retrieval task which shows that the methodology improves the performance
of kernel based state-of-the art techniques in this field with a low extra computational cost.

2 Kernels Defined through Hierarchies of Histograms

In the kernel literature, structured objects are usually represented as histograms of components, e.g.,
images as histograms of colors and/or features, texts as bags of words and sequences as histograms
of letters orn-grams. The obvious drawback of this representation is that it usually loses all the
contextual information which may be useful to characterize each sampled component in the original
object. One may instead create families of histograms, indexed by specific sampling conditions:

• In image analysis, create color or feature histograms following a prior partition of the image
into predefined patches, as in (Grauman & Darrell, 2005). Another possibility would be to
define families of histograms, all for the same image, which would consider increasingly
granular discretizations of the color space.

• In sequence analysis, extract local histograms which may correspond to predefined regions
of the original sequence, as in (Matsuda et al., 2005). A different option would be to asso-
ciate to each histogram a context of arbitrary length, e.g. by considering the 26 histogram
of letters sampled just after the letters{A,B, · · · , Z}, or the26 × 26 histograms of letters
after contexts{AA,AB, · · · , ZZ}.



• In text analysis, use histograms of words found after grammatical categories of increasing
complexity, such as verbs, nouns, articles or adverbs.

• For synchronous time series (e.g. financial time series or gene expression profiles), define
a reference series (e.g. an index or a specific gene) and decompose each of the subsequent
series into histograms of values conditioned to the value of the reference series.

We writeL for an arbitrary index set to label such specific histograms. Structured objects are thus

represented as a familyµ of ML(X )
def
=(M b

+(X ))L, that isµ = {µt}t∈L where for eacht ∈ L, µt
is a bounded measure ofM b

+(X ). We write|µ| for
∑

t∈L |µt|.

2.1 Local Similarities Between Measures

To compare two objects under the light of any sampling conditiont, that is comparing their respec-
tive decompositions as measuresµt andµ′

t, we make use of an arbitrary p.d. kernelk onM b
+(X )

to which we will refer as the base kernel throughout the paper. For interpretation purposes only, we
will assume in the following sections thatk is an infinitely divisible kernel which can be written
ask = e−

1

λ
ψ, λ > 0, whereψ is a negative definite (Berg et al., 1984) kernel onM b

+(X ), or
equivalently−ψ is a conditionally p.d. kernel. Note also thatk has to be p.d. not only on probabil-
ity measures, but on any bounded measure. For two elementsµ, µ′ of ML(X ) and a given element
t∈ L, the kernel

kt(µ, µ
′)

def
= k(µt, µ

′
t)

quantifies the similarity ofµ andµ′ by measuring how similarly their components were observed
with respect to labelt. For two different labelss andt of L, ks andkt can be associated through
polynomial combinations with positive coefficients to result in new kernels, notably their sumks+kt
or their productkskt. This is particularly adequate if some complementarity is assumed betweens
andt, so that their combination can provide new insights for a given learning task. If on the contrary
these labels are assumed to be similar, then they can be regarded as a grouped label{s} ∪ {t} and
result in the kernel

k{s}∪{t}(µ, µ
′)

def
= k(µs + µt, µ

′
s + µ′

t),

which will measure the similarity ofm andm′ underboth s or t labels. Let us give an intuition
for this definition by considering two textsA,B built up with words from a dictionaryD. As an
alternative to the general histograms of wordsθA andθB ofM b

+(D), one may consider for instance
θAcan, θ

A
may andθBcan, θ

B
may, the respective histograms of words that follow the wordscan andmay in

texts A and B respectively. If one considers thatcan andmay are different words, then the following
kernel quantifies the similarity ofA andB taking advantage of this difference:

k{can},{may}(A,B) = k(θAcan, θ
B
can) × k(θAmay, θ

B
may).

If on the contrary one decides thatcan andmay are equivalent, an adequate kernel would first
merge the histograms, and then compare them:

k{can,may}(A,B) = k(θAcan+ θAmay, θ
B
can+ θBmay).

The previous formula can be naturally extended to define kernels indexed on a setT ⊂ L of grouped
labels, through

kT (µ, µ′)
def
= k (µT , µ

′
T ) ,where µT

def
=

∑

t∈ T

µt and µ′
T

def
=

∑

t∈ T

µ′
t.

2.2 Resolution Specific Kernels

Having defined a family of kernels{kT , T ⊂ L} which can detect conditional similarities between
two elements ofML(X ) given a subsetT of L, we define in this section different ways to combine
them to obtain a kernel which can take into account all of their histograms. LetP be a finite partition
of L, that is a finite familyP = (T1, ..., Tn) of sets ofL, such thatTi ∩ Tj = ∅ if 1 ≤ i < j ≤ n
and

⋃n

i=1 Ti = L. We writeP(L) for the set of all partitions ofL. Consider now the kernel defined
by a partitionP as

kP (µ, µ′)
def
=

n
∏

i=1

kTi
(µ, µ′). (1)



The kernelkP quantifies the similarity between two objects by detecting their joint similarity under
all possible labels ofL, assuminga priori that certain labels can be grouped together, following the
subsetsTi enumerated in the partitionP . Note that there is some arbitrary in this definition since
a simple multiplication of base kernelskTi

is used to definekP , rather than any other polynomial
combination. We follow in that sense the convolution kernels (Haussler, 1999) approach, and indeed,
for each partitionP , kP can be regarded as a convolution kernel. More precisely, the multiplicative
structure of Equation (1) quantifies how similar two objects are given a partitionP , in a way that
imposes for the objects to be similar according to all subsetsTi. If the base kernelk can be written
ask = e−

1

λ
ψ, whereψ is a negative definite kernel, thenkP can be expressed as the exponential of

minus

ψP (µ, µ′)
def
=

n
∑

i=1

ψTi
(µ, µ′) =

n
∑

i=1

ψ(µTi
, µ′
Ti

),

a quantity which penalizes local differences between the decompositions ofµ andµ′ overL, as
opposed to the coarsest approach whereP = {L} and onlyψ(

∑

t µt,
∑

t µ
′
t) is considered.

Figure 2: A useful set of labelsL for images which would focus on pixel localization can be rep-
resented by a grid, such as the8 × 8 one represented above. In this caseP3 corresponds to the43

windows presented in the left image,P2 to the16 larger squares obtained when grouping4 small
windows,P1 to the image divided into4 equal parts andP0 is simply the whole image. Any partition
P of the image which complies with the hierarchyP 3

0 in the example above, can in turn be used to
represent an image as a family of sub-probability measures, which reduces in the case of two-color
images to binary histograms as illustrated in the right-most image. For two images, these respective
histograms can be directly compared through the kernelkP .

As illustrated in Figure 2, where images are summarized through histograms indexed by patches, a
partition ofL reflects a given belief on how patches may or may not be associated or split to focus
on local dissimilarities. Hence, all partitions contained in the setP(L) of all possible partitions1

are not likely to be equally meaningful given that some labels may a natural form of grouping. If
the index is built to highlight differences in locations, one would naturally favor mergers between
neighboring indexes. If one uses a Markovian analysis, that is consider histograms of components
conditioned by contexts, a natural way to group contexts would be to group them according to their
semantic or grammatical content for text analysis or according to their suffix for sequence analysis.

Such meaningful partitions can be intuitively obtained when a hierarchical structure which groups
elements ofL together is known a priori. A hierarchy onL, such as the triadic hierarchy shown in
Figure 3, is a family

(Pd)
D
d=0 = {P0 = {L}, .., PD = {{t}, t∈ L}}

of partitions ofL. To provide a hierarchical information, the family(Pd)
D
d=0 is such that any subset

present in a partitionPd is strictly included in a (unique by definition of a partition) subset from
the coarser partitionPd−1. This is equivalent to stating that each subsetT in a partitionPd is
divided inPd+1 as a partition ofT which is notT itself. We writes(T ) for this partition (e.g.,
in Figure 3,s(1) = {11, · · · , 19}) and name its elements the siblings ofT . Consider now the
subsetPD ⊂ P(L) of all partitions ofL obtained by using only sets contained in the collection

PD0
def
=

⋃D

d=0 Pd, namelyPD def
= {P ∈ P(L) s.t.∀T ∈ P, T ∈ PD0 }. The setPD contains both the

coarsest and the finest resolutions, respectivelyP0 andPD, but also all variable resolutions for sets
enumerated inPD0 , as can be seen for instance in the third image of Figure 2.

1
P(L) is quite a big space, since ifL is a finite set of cardinalr, the cardinal of the set of partitions is known

as the Bell Number of orderr with Br = 1

e

P
∞

u=1

u
r

u!
∼

r→∞

e
r ln r.
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Figure 3: A hierarchy generated by two successive triadic partitions.

2.3 Averaging Resolution Specific Kernels

Each partitionP contained inPD provides a resolution to compare two objects, which generates
a large family of kernelskP whenP spansPD. Some partitions are likely to be better suited for
certain tasks, which may call for an efficient estimation scheme to select an optimal partition for
a given task. This would be similar in spirit to estimating a maximum a posteriori model for the
data and use it consequently to compare the objects. We take in this section a different direction
which has a more Bayesian flavor by considering an averaging of such kernels based on a prior
on the set of partitions. In practice, this averaging favours objects which share similarities under a
large collection of resolutions, and may also be interpreted as a Bayesian averaging of convolution
kernels (Haussler, 1999).

Definition 1 LetL be an index set endowed with a hierarchy(Pd)
D
d=0, π be a prior measure on the

corresponding set of partitionsPD andk a base kernel onM b
+(X )×M b

+(X ). The averaged kernel
kπ onML(X ) ×ML(X ) is defined as

kπ(µ, µ
′) =

∑

P ∈ PD

π(P ) kP (µ, µ′). (2)

As can be observed in Equation (2), the kernel automatically detects in the range of all partitions
the ones which provide a good match between the compared objects, to increase subsequently the
resulting similarity score. Also note that in an image-analysis context, the pyramid-matching ker-
nel proposed in (Grauman & Darrell, 2005) only considers the original partitions of the hierarchy
(Pd)

D
d=0, while Equation (2) considers all possible partitions ofPD. This can be carried out with

little cost if an adequate set of priorsπ is selected as seen below.

3 Kernel Computation

We provide in this section hierarchies(Pd)
D
d=0 and priorsπ for which the computation ofkπ is both

meaningful and tractable, yielding namely a computational time to calculatekπ which is loosely
upperbounded byD × cardL × c(k) wherec(k) is the time required to compute the base kernel.

3.1 Partitions Generated by Branching Processes

All partitions P of PD can be generated through the following rule, starting from the initial root
partitionP := P0 = {L}. For each setT of P :

1. either leave the set as it is inP with probability1 − εT ,

2. either replace it by its siblings ins(T ) with probabilityεT , and reapply this rule to each
sibling unless they belong to the finest partitionPD.

The resulting prior forPD depends on the overall coarseness of the considered partitions, and can be
tuned through parametersεT to favor adaptively coarse or fine partitions. For a partitionP ∈ PD,

π(P ) =
∏

T ∈ P (1 − εT )
∏

T ∈
◦

P
(εT ), where the set

◦

P = {T ∈ PD0 s.t.∃V ∈ P, V ( T } gathers

all coarser sets belonging to coarser resolutions thanP , and can be regarded as the set of all ancestors
in PD0 of sets enumerated inP .



3.2 Factorization ofkπ

We use the branching-process prior can be used to factorize the formula in Equation (2):

Proposition 2 For two elementsµ, µ′ of ML(X ), define forT spanning recursively all sets con-
tained inPD, PD−1, ..., P0 the quantityKT below; thenkπ(µ, µ′) = KL.

KT = (1 − εT )kT (µ, µ′) + εT
∏

U ∈ s(T )

KU .

Proof
The proof follows from a factorization which
uses the branching process prior used for the
tree generation, and can be derived from the
proof of (Catoni, 2004, Proposition 5.2). The
opposite figure underlines the importance of
incorporating to each nodeKT a weighted
product of the sibling kernel evaluationsKU .
The update rule for the computation ofkπ
takes into account the branching process prior
by weighting the kernelkT with all valueskti
obtained for finer resolutionsti in s(T ).

Kt3

KT = (1 − εT )k(µT , µ′
T ) + εT

∏

Kti

Kt2

Kt1

µ′
t3

µt3

µ′
t2

µt2

µ′
t1

µt1

µT =
∑

µti
µ′
T =

∑

µ′
ti

If the hierarchy ofL is such that the cardinality ofs(T ) is fixed to a constantα for any setT , typically
α = 4 for images in the case described in Figure 2, then the computation ofkπ is upperbounded
by (αD+1 − 1)c(k). This complexity is also upperbounded by the total amount of components
considered in the compared objects, as in (Cuturi & Vert, 2005) for instance.

3.3 Choosing the Base Kernel

Any kernel onM b
+(X ) can be used to comply with the terms of Definition 1 and apply an average

scheme on families of measures. We also note that an even more general formulation can be obtained
by using a different kernelkt for each labelt of L, without altering the overall applicability of the
factorization above. However, we only consider in this discussion a unique choicek for all t ∈ L.

First, one can note that kernels such as the information diffusion kernel (Lafferty & Lebanon, 2005)
and variance based kernels (Kondor & Jebara, 2003; Cuturi et al., 2005) may not work in this
setting since they are not p.d., nor sometimes defined, on the whole ofM b

+(X ). The most adequate
geometry ofM b

+(X ), following the denormalization scheme proposed in (Amari & Nagaoka, 2001,
p.47), may arguably be derived from the Riemannian embeddingν 7→ √

ν, where the Euclidian
distance between two measures in this representation is equal to the geodesic distance betweenν
andν′ in M b

+(X ) endowed with the Fisher metric, as expressed inψH2
below. More generally,

one can consider the whole family of kernels for bounded measures described in (Hein & Bousquet,
2005) to choose the base kernelk, namely the family of Hilbertian metricsψ such thatk = e−

1

λ
ψ.

We thus use in our experiments the Jensen divergence, theχ2 distance, the total variation, and two
variations of the Hellinger distance:

ψJD(θ, θ′) = h

(

θ + θ′

2

)

− h(θ) + h(θ′)

2
, ψχ2 (θ, θ′) =

∑

i

(θi − θ′i)
2

θi + θ′i
,

ψTV (θ, θ′) =
∑

i

|θi − θ′i|, ψH2
(θ, θ′) =

∑

i

|
√

θi −
√

θ′i|2, ψH1
(θ, θ′) =

∑

i

|
√

θi −
√

θ′i|.

4 Experiments in Image Retrieval

We present in this section experiments inspired by the image retrieval task first considered
in (Chapelle et al., 1999) and reused in (Hein & Bousquet, 2005). Our dataset was also extracted
from the Corel Stock database and includes 12 families of labeled images, each class containing
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Figure 4: Misclassification rate on the corel experiment, using the HellingerH1 distance between
histograms coupled with one-vs-all SVM classification (C = 100) as a function ofλ and ε. 1

λ

is taken in{2−12, · · · , 22} while ε spans{0, 0.1, · · · , 0.9, 1}. ε controls the granularity of the
averaging kernel, ranging from the coarsest perspective (ε = 0) when only the global histogram is
used, to the finest one (ε = 1) when only the finest histograms are considered. Dark values represent
error rates which aregreateror equal to 24%. The central values are roughly 14.5% while the best
value obtained in the columnsε = 0 andε = 1 are 18.4% and 17.3% respectively

100 color images of256 × 384 pixels. The families depict images ofbears, African specialty an-
imals, monkeys, cougars, fireworks, mountains, office interiors, bonsais, sunsets, clouds, apesand
rocks and gems. The database is randomly split into balanced sets of 800 training images and 400
test images. The task consists in classifying the test images with the rule learned by training 12
one-versus-all SVM’s on the learning fold. Note that previous work conducted in (Chapelle et al.,
1999) illustrates the competitiveness of SVM’s in this context over other algorithms such as nearest
neighbors. Our results are averaged over 3 random splits, using the Spider toolbox.

We used 9 bits for the color of each pixel to reduce the size of the RGB color space to83 = 512
from the original set of2563 = 16, 777, 216 colors, and we defined centered grids of4, 42 = 16
and43 = 64 local patches. We provide results for each of the 5 considered kernels and for each
considered depthD ranging from 1 to 3. Figure 5 presents15 = 5×3 plots, where each plot displays
the misclassification rate as a function of the width parameter1

λ
and the branching process priorε

set over all nodes of the tree. The constant C is set to 100, but other choices for C (1000 and 10)
gave comparable plots, although a bit different in shape. By considering values ofε ranging from0
to 1, we aim at giving a sketch of the robustness of the averaging approach, since the SVM’s seem
to perform better when0 < ε < 1 for a large span ofλ values. For a better understanding of these
plots, the reader may refer to Figure 4 which focuses onψH1

andD = 2, noting that the color scales
used for Figures 4 and 5 are the same. Finally, the Gaussian kernel was also tested but its very poor
performance (with error rate above 22% for all parameters) illustrates once more that the Gaussian
kernel is usually a poor choice to compare histograms directly.

5 Discussion

The computation of averaged kernels can be performed almost as fast as kernels which only rely
on fine resolutions, which along with their robustness and improved performance might advocate
their use, notably as an extension of kernels based on arbitrary partitions (Grauman & Darrell, 2005;
Matsuda et al., 2005). Principled ways of estimating in a semi-supervised setting bothλ andε, or
preferably localized priorsλT andεT , T ∈ PD0 , might give them an additional edge. This is a topic
of current research, and we suggest to set these parameters through cross-validation at the moment,
while H1 seems to be a reasonable choice to define the base kernel. Our approach is related to
the Multiple Kernel Learning framework (Lanckriet et al., 2004), although we do not aim here at
learning linear combinations of the kernelskT , but rather start from an hierarchical belief on them
to propose an algebraic combination.
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