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Abstract

A longstanding goal of reinforcement learning is to develop non-
parametric representations of policies and value functions that support
rapid learning without suffering from interference or the curse of di-
mensionality. We have developed a trajectory-based approach, in which
policies and value functions are represented nonparametrically along tra-
jectories. These trajectories, policies, and value functions are updated as
the value function becomes more accurate or as a model of the task is up-
dated. We have applied this approach to periodic tasks such as hopping
and walking, which required handling discount factors and discontinu-
ities in the task dynamics, and using function approximation to represent
value functions at discontinuities. We also describe extensions of the ap-
proach to make the policies more robust to modeling error and sensor
noise.

1 Introduction

The widespread application of reinforcement learning is hindered by excessive cost in terms
of one or more of representational resources, computation time, or amount of training data.
The goal of our research program is to minimize these costs. We reduce the amount of train-
ing data needed by learning models, and using a DYNA-like approach to do mental practice
in addition to actually attempting a task [1, 2]. This paper addresses concerns about com-
putation time and representational resources. We reduce the computation time required by
using more powerful updates that update first and second derivatives of value functions
and first derivatives of policies, in addition to updating value function and policy values at
particular points [3, 4, 5]. We reduce the representational resources needed by representing
value functions and policies along carefully chosen trajectories. This non-parametric repre-
sentation is well suited to the task of representing and updating value functions, providing
additional representational power as needed and avoiding interference.

This paper explores how the approach can be extended to periodic tasks such as hopping
and walking. Previous work has explored how to apply an early version of this approach
to tasks with an explicit goal state [3, 6] and how to simultaneously learn a model and
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use this approach to compute a policy and value function [6]. Handling periodic tasks
required accommodating discount factors and discontinuities in the task dynamics, and
using function approximation to represent value functions at discontinuities.

2 What is the approach?

Represent value functions and policies along trajectories. Our first key idea for creating
a more global policy is to coordinate many trajectories, similar to using the method of
characteristics to solve a partial differential equation. A more global value function is
created by combining value functions for the trajectories. As long as the value functions are
consistent between trajectories, and cover the appropriate space, the global value function
created will be correct. This representation supports accurate updating since any updates
must occur along densely represented optimized trajectories, and an adaptive resolution
representation that allocates resources to where optimal trajectories tend to go.

Segment trajectories at discontinuities. A second key idea is to segment the trajectories
at discontinuities of the system dynamics, to reduce the amount of discontinuity in the value
function within each segment, so our extrapolation operations are correct more often. We
assume smooth dynamics and criteria, so that first and second derivatives exist. Unfortu-
nately, in periodic tasks such as hopping or walking the dynamics changes discontinuously
as feet touch and leave the ground. The locations in state space at which this happens
can be localized to lower dimensional surfaces that separate regions of smooth dynamics.
For periodic tasks we apply our approach along trajectory segments which end whenever
a dynamics (or criterion) discontinuity is reached. We also search for value function dis-
continuities not collocated with dynamics or criterion discontinuities. We can use all the
trajectory segments that start at the discontinuity and continue through the next region to
provide estimates of the value function at the other side of the discontinuity.

Use function approximation to represent value function at discontinuities. We use
locally weighted regression (LWR) to construct value functions at discontinuities [7].

Update first and second derivatives of the value function as well as first derivatives of
the policy (control gains for a linear controller) along the trajectory. We can think of
this as updating the first few terms of local Taylor series models of the global value and
policy functions. This non-parametric representation is well suited to the task of represent-
ing and updating value functions, providing additional representational power as needed
and avoiding interference.

We will derive the update rules. Because we are interested in periodic tasks, we must intro-
duce a discount factor into Bellman’s equation, so value functions remain finite. Consider
a system with dynamics ���������
	������������� and a one step cost function � ������������� , where� is the state of the system and � is a vector of actions or controls. The subscript � serves
as a time index, but will be dropped in the equations that follow in cases where all time
indices are the same or are equal to � .

A goal of reinforcement learning and optimal control is to find a policy that minimizes the
total cost, which is the sum of the costs for each time step. One approach to doing this is to
construct an optimal value function, � ����� . The value of this value function at a state � is
the sum of all future costs, given that the system started in state � and followed the optimal
policy (chose optimal actions at each time step as a function of the state). A local planner
or controller can choose globally optimal actions if it knew the future cost of each action.
This cost is simply the sum of the cost of taking the action right now and the discounted
future cost of the state that the action leads to, which is given by the value function. Thus,
the optimal action is given by: ����� ��!#"%$'&)(*� � ���#������+-, � �.	/���#�����0��� where , is the
discount factor.
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Figure 1: Example trajectories where the value function and policy are explicitly repre-
sented for a regulator task at goal state G (left), a task with a point goal state G (middle),
and a periodic task (right).

Suppose at a point ����������� � we have 1) a local second order Taylor series approximation of
the optimal value function: � ������� ��� + ��� �� + �	 ���
 ���� �� where

�� � ��� � � . 2) a local
second order Taylor series approximation of the dynamics, which can be learned using
local models of the plant ( 	 � and 	�� correspond to the usual

�
and � of the linear plant

model used in linear quadratic regulator (LQR) design): ������� � 	���#������� 	 � + 	 � �� +
	 � �� + �	 ���
�	 ��� �� + ���
�	 � � �� + �	 ���
�	 ��� �� where

�� � ���-� � , and 3) a local second order
Taylor series approximation of the one step cost, which is often known analytically for
human specified criteria ( � �� and � ��� correspond to the usual � and � of LQR design):
� ���#������� � � + � � �� + � � �� + �	 ���
 � �� �� + ���
 � � � �� + �	 ���
 � ��� ��
Given a trajectory, one can integrate the value function and its first and second spatial
derivatives backwards in time to compute an improved value function and policy. The
backward sweep takes the following form (in discrete time):� � � � � + , � � 	 ��� � � � � ��+-, � � 	�� (1)� �� � , 	 
� � �� 	 � + , � � 	 �� + � ���� � � � � , 	 
� � �� 	 � + , � � 	�� � + � � � (2)� ��� � , 	 
� ���� 	 � + , ��� 	 ��� + � �� (3) � � �"! ���� � � �$# � �"! ���� � � � (4)

����%'&)( � � � � � � #*� ����%+&)( � � �� � � � � # (5)

After the backward sweep, forward integration can be used to update the trajectory itself:��,.-0/ � �1�  �2� # ���,.-0/3� ���
In order to use this approach we have to assume smooth dynamics and criteria, so that first
and second derivatives exist. Unfortunately, in periodic tasks such as hopping or walking
the dynamics changes discontinuously as feet touch and leave the ground. The locations in
state space at which this happens can be localized to lower dimensional surfaces that sepa-
rate regions of smooth dynamics. For periodic tasks we apply our approach along trajectory
segments which end whenever a dynamics (or criterion) discontinuity is reached. We can
use all the trajectory segments that start at the discontinuity and continue through the next
region to provide estimates of the value function at the other side of the discontinuity.

Figure 1 shows our approach applied to several types of problems. On the left we see that
a task that requires steady state control about a goal point (a regulator task) can be solved
with a single trivial trajectory that starts and ends at the goal and provides a value function
and constant linear policy

�� � # �� in the vicinity of the goal.
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Figure 2: The optimal hopper controller with a range of penalties on � usage ��� �
� � ����� � ��������� � . � ���#����� �
	�� ����������������� � 	 +������ 	

The middle figure of Figure 1 shows the trajectories used to compute the value function for
a swing up problem [3]. In this problem the goal requires regulation about the state where
the pendulum is inverted and in an unstable equilibrium. However, the nonlinearities of the
problem limit the region of applicability of a linear policy, and non-trivial trajectories have
to be created to cover a larger region. In this case the region where the value function is less
than a target value is filled with trajectories. The neighboring trajectories have consistent
value functions and thus the globally optimal value function and policy is found in the
explored region [3].

The right figure of Figure 1 shows the trajectories used to compute the value function for a
periodic problem, control of vertical hopping in a hopping robot. In this problem, there is
no goal state, but a desired hopping height is specified. This problem has been extensively
studied in the robotics literature [8] from the point of view of how to manually design a
nonlinear controller with a large stability region. We note that optimal control provides
a methodology to design nonlinear controllers with large stability regions and also good
performance in terms of explicitly specified criteria. We describe later how to also make
these controller designs more robust.

In this figure the vertical axis corresponds to the height of the hopper, and the horizontal
axis is vertical velocity. The robot moves around the origin in a counterclockwise direction.
In the top two quadrants the robot is in the air, and in the bottom two quadrants the robot
is on the ground. Thus, the horizontal axis is a discontinuity of the robot dynamics, and
trajectory segments end and often begin at the discontinuity. We see that while the robot is
in the air it cannot change how much energy it has (how high it goes or how fast it is going
when it hits the ground), as the trajectories end with the same pattern they began with.
When the robot is on the ground it thrusts with its leg to “focus” the trajectories so the
set of touchdown positions is mapped to a smaller set of takeoff positions. This funneling
effect is characteristic of controllers for periodic tasks, and how fast the funnel becomes
narrow is controlled by the size of the penalty on � usage (Figure 2).

2.1 How are trajectory start points chosen?

In our approach trajectories are refined towards optimality given their fixed starting points.
However, an initial trajectory must first be created. For regulator tasks, the trajectory is
trivial and simply starts and ends at the known goal point. For tasks with a point goal,
trajectories can be extended backwards away from the goal [3]. For periodic tasks, crude
trajectories must be created using some other approach before this approach can refine



them.

We have used several methods to provide initial trajectories. Manually designed controllers
sometimes work. In learning from demonstration a teacher provides initial trajectories [6].
In policy optimization (aka “policy search”) a parameterized policy is optimized [9].

Once a set of initial task trajectories are available, the following four methods are used to
generate trajectories in new parts of state space. We use all of these methods simultane-
ously, and locally optimize each of the trajectories produced. The best trajectory of the set
is then stored and the other trajectories are discarded. 1) Use the global policy generated
by policy optimization, if available. 2) Use the local policy from the nearest point with the
same type of dynamics. 3) Use the local value function estimate (and derivatives) from the
nearest point with the same type of dynamics. and 4) Use the policy from the nearest tra-
jectory, where the nearest trajectory is selected at the beginning of the forward sweep and
kept the same throughout the sweep. Note that methods 2 and 3 can change which stored
trajectories they take points from on each time step, while method 4 uses a policy from a
single neighboring trajectory.

3 Control of a walking robot

As another example we will describe the search for a policy for walking of a simple planar
biped robot that walks along a bar. The simulated robot has two legs and a torque motor
between the legs. Instead of revolute or telescoping knees, the robot can grab the bar with
its foot as its leg swings past it. This is a model of a robot that walks along the trusses of
a large structure such as a bridge, much as a monkey brachiates with its arms. This simple
model has also been used in studies of robot passive dynamic walking [10].

This arrangement means the robot has a five dimensional state space: left leg angle �����.� ,
right leg angle ����� � , left leg angular velocity ������.� , right leg angular velocity �	���� � , and stance
foot location. A simple policy is used to determine when to grab the bar (at the end of a
step when the swing foot passes the bar going downwards). The variable to be controlled
is the torque 
 at the hip.

The criterion we used is quite complex. We are a long way from specifying an abstract
or vague criterion such as “cover a fixed distance with minimum fuel or battery usage”
or “maximize the amount of your genes in future gene pools” and successfully finding an
optimal or reasonable policy. At this stage we need to include several “shaping” terms in the
criterion, that reward keeping the hips at the right altitude with minimal vertical velocity,
keeping the leg amplitude within reason, maintaining a symmetric gait, and maintaining
the desired hip forward velocity:
������ ������� ��� � � 	 +����� �� 	 +�������� � 	� +������ ��� 	� +���������������� +�� �� � �! � �! � � 	 + 
 	 (6)

where the ��" are weighting factors and are �#� � �����
, ����-� �����

. ��� � �����
, ����� �

�����������
, and � �� � �����

. The leg length is 1 meter (hence the 1 in � � � � � � � 	 ). The desired
leg velocity �! � � �%$ 	'&)(�� . ��� ��" provides a measure of how far the left or right leg has gone
past its limits * �+$ � ��,.-�/0,��1� in the forward or backward direction. �����'��� is the product of
the leg angles if the legs are both forward or both rearward, and zero otherwise. ��!�� ��� is the
hip location. The integration and control time steps are 1 millisecond each. The dynamics
of this walker are simulated using a commercial package, SDFAST.

Initial trajectories were generated by optimizing the coefficients of a linear policy. When
the left leg was in stance:


 �32 � +42#�5����� +62 	 ��� +6287 �*+62:9 ������ +62:; ���� +628< �! +628= �� (7)

where ����� is the angle between the legs. When the right leg was in stance the same policy
was used with the appropriate signs negated.



3.1 Results

The trajectory-based approach was able to find a cheaper and more robust policy than
the parametric policy-optimization approach. This is not surprising given the flexible and
expandable representational capacity of an adaptive non-parametric representation, but it
does provide some indication that our update algorithms can usefully harness the additional
representation power.

Cost: For example, after training the parametric policy, we measured the undiscounted cost
over 1 second (roughly one step of each leg) starting in a state along the lowest cost cyclic
trajectory. The cost for the optimized parametric policy was 4316. The corresponding cost
for the trajectory-based approach starting from the same state was 3502.

Robustness: We did a simple assessment of robustness by adding offsets to the same
starting state until the optimized linear policy failed. The offsets were in terms of the
stance leg and the angle between the legs, and the corresponding angular velocities. The
maximum offsets for the linearized optimized parametric policy are � �+$ ����� � � � � �
�+$ ���

, � �%$ 	�� � � ���� � � �+$ �
, � �+$��	� � ����� � � �%$ ��


, and � �+$���	� � ������ � � �%$ �
. We did a

similar test for the trajectory approach. In each direction the maximum offset the trajectory-
based approach was able to handle was equal to or greater than the parametric policy-based
approach, extending the range most in the cases of � � � � � �+$ �

and �� � � � � ��$ �
. This

is not surprising, since the trajectory-based controller uses the parametric policy as one
of the ways to initially generate candidate trajectories for optimization. In cases where
the trajectory-based approach is not able to generate an appropriate trajectory, the system
will generate a series of trajectories with start points moving from regions it knows how
to handle towards the desired start point. Thus, we have not yet discovered situations that
are physically possible to recover that the trajectory-based approach cannot handle if it is
allowed as much computation time as it needs.

Interference: To demonstrate interference in the parametric policy approach, we optimized
its performance from a distribution of starting states. These states were the original state,
and states with positive offsets. The new cost for the original starting position was 14,747,
compared to 4316 before retraining. The trajectory approach has the same cost as before,
3502.

4 Robustness to modeling error and imperfect sensing

So far we have addressed robustness in terms of the range of initial states that can be
handled. Another form of robustness is robustness to modeling error (changes in masses,
friction, and other model parameters) and imperfect sensing, so that the controller does not
know exactly what state the robot is in. Since simulations are used to optimize policies, it
is relatively easy to include simulations with different model parameters and sensor noise
in the training and optimize for a robust parametric controller in policy shaping. How does
the trajectory-based approach achieve comparable robustness?

We have developed two approaches, a probabilistic approach with maintains distributional
information about unknown states and parameters, and a game-based or minimax approach.
The probabilistic approach supports actions by the controller to actively minimize uncer-
tainty as well as achieve goals, which is known as dual control. The game-based approach
does not reduce uncertainty with experience, and is somewhat paranoid, assuming the
world is populated by evil spirits which choose the worst possible disturbance at each time
step for the controller. This results in robust, but often overly conservative policies.

In the probabilistic case, the state is augmented with any unknown parameters such as
masses of parts or friction coefficients, and the covariance of all the original elements of



the state as well as the added parameters. An extended Kalman filter is constructed as the
new dynamics equation, predicting the new estimates of the means and covariances given
the control signals to the system. The one step cost function is restated in terms of the
augmented state. The value function is now a function of the augmented state, including
covariances of the original state vector elements. These covariances interact with the cur-
vature of the value function, causing additional cost in areas of the value function that have
high curvature or second derivatives. Thus the system is rewarded when it moves to areas
of the value function that are planar, and uncertainty has no effect on the expected cost. The
system is also rewarded when it learns, which reduces the covariances of the estimates, so
the system may choose actions that move away from a goal but reduce uncertainty. This
probabilistic approach does dramatically increase the dimensionality of the state vector and
thus the value function, but in the context of only a quadratic cost on dimensionality this is
not as fatal is it would seem.

A less expensive approach is to use a game-based uncertainty model with minimax op-
timization. In this case, we assume an opponent can pick a disturbance to maximally
increase our cost. This is closely related to robust nonlinear controller design techniques
based on the idea of ��� control [11, 12] and risk sensitive control [13, 14]. We augment
the dynamics equation with a disturbance term: ��� ��� � 	���#��� ����� � 	�� ���
	�� ,�5����#������+��
where � is a vector of disturbance inputs. To limit the size of the disturbances, we in-
clude the disturbance magnitude in a modified one step cost function with a negative sign.
The opponent who controls the disturbance wants to increase our cost, so this new term
gives an incentive to the opponent to choose the worse direction for the disturbance, and
a disturbance magnitude that gives the highest ratio of increased cost to disturbance size:
� ���#��� ����� � � � ���
	�� ,��5�0��#����� ��� 
���� . Initially, � is set to globally approximate the
uncertainty of the model. Ultimately, � should vary with the local confidence in the
model. Highly practiced movements or portions of movements should have high � , and
new movements should have lower � . The optimal action is now given by Isaacs’ equa-
tion: ��� ����� � ����! " ����� " $'& ( � � ��#��� ������+ , � � �����.	/���#��� �������0� . How we solve Isaacs’
equation and an application of this method are described in the companion paper [15].

5 How to cover a volume of state space

In tasks with a goal or point attractor, [3] showed that certain key trajectories can be grown
backwards from the goal in order to approximate the value function. In the case of a sparse
use of trajectories to cover a space, the cost of the approach is dominated by the - 	 costs
of updating second derivative matrices, and thus the cost of the trajectory-based approach
increases quadratically as the dimensionality increases.

However, for periodic tasks the approach of growing trajectories backwards from the goal
cannot be used, as there is no goal point or set. In this case the trajectories that form the
optimal cycle can be used as key trajectories, with each point along them supplying a local
linear policy and local quadratic value function. These key trajectories can be computed
using any optimization method, and then the corresponding policy and value function esti-
mates along the trajectory computed using the update rules given here.

It is important to point out that optimal trajectories need only be placed densely enough to
separate regions which have different local optima. The trajectories used in the represen-
tation usually follow local valleys of the value function. Also, we have found that natural
behavior often lies entirely on a low-dimensional manifold embedded in a high dimensional
space. Using these trajectories and creating new trajectories as task demands require it, we
expect to be able to handle a range of natural tasks.



6 Contributions

In order to accommodate periodic tasks, this paper has discussed how to incorporate dis-
count factors into the trajectory-based approach, how to handle discontinuities in the dy-
namics (and equivalently, criteria and constraints), and how to find key trajectories for a
sparse trajectory-based approach. The trajectory-based approach requires less design skill
from humans since it doesn’t need a “good” policy parameterization, produces cheaper and
more robust policies, which do not suffer from interference.
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