
Online Learning with Kernels

Jyrki Kivinen Alex J. Smola Robert C. Williamson
Research School of Information Sciences and Engineering

Australian National University
Canberra, ACT 0200

Abstract

We consider online learning in a Reproducing Kernel Hilbert Space. Our
method is computationally efficient and leads to simple algorithms. In
particular we derive update equations for classification, regression, and
novelty detection. The inclusion of the � -trick allows us to give a robust
parameterization. Moreover, unlike in batch learning where the � -trick
only applies to the � -insensitive loss function we are able to derive gen-
eral trimmed-mean types of estimators such as for Huber’s robust loss.

1 Introduction

While kernel methods have proven to be successful in many batch settings (Support Vector
Machines, Gaussian Processes, Regularization Networks) the extension to online methods
has proven to provide some unsolved challenges. Firstly, the standard online settings for
linear methods are in danger of overfitting, when applied to an estimator using a feature
space method. This calls for regularization (or prior probabilities in function space if the
Gaussian Process view is taken).

Secondly, the functional representation of the estimator becomes more complex as the num-
ber of observations increases. More specifically, the Representer Theorem [10] implies
that the number of kernel functions can grow up to linearly with the number of observa-
tions. Depending on the loss function used [15], this will happen in practice in most cases.
Thereby the complexity of the estimator used in prediction increases linearly over time (in
some restricted situations this can be reduced to logarithmic cost [8]).

Finally, training time of batch and/or incremental update algorithms typically increases su-
perlinearly with the number of observations. Incremental update algorithms [2] attempt to
overcome this problem but cannot guarantee a bound on the number of operations required
per iteration. Projection methods [3] on the other hand, will ensure a limited number of
updates per iteration. However they can be computationally expensive since they require
one matrix multiplication at each step. The size of the matrix is given by the number of
kernel functions required at each step.

Recently several algorithms have been proposed [5, 8, 6, 12] performing perceptron-like
updates for classification at each step. Some algorithms work only in the noise free case,
others not for moving targets, and yet again others assume an upper bound on the complex-
ity of the estimators. In the present paper we present a simple method which will allows
the use of kernel estimators for classification, regression, and novelty detection and which
copes with a large number of kernel functions efficiently.

2 Stochastic Gradient Descent in Feature Space

Reproducing Kernel Hilbert Space The class of functions
���������

to be studied in
this paper are elements of an RKHS 	 . This means that there exists a kernel
 ���
�������
and a dot product ��������� such that 1) � ��� � ����
 ��� ����� �"! ���#� � (reproducing property); 2) 	 is
the closure of the span of all
 ��� ����� with

�%$&�
. In other words, all

�&$ 	 are linear
combinations of kernel functions.

Typically ' � '�()!*� � � � � is used as a regularization functional. It is the “length of the weight
vector in feature space” as commonly used in SV algorithms. To state our algorithm we
need to compute derivatives of functionals defined on 	 .

For the regularizer +-, �/.0� !21(' � '�(we obtain 3546+-, �/. ! �
. More general versions of

+-, �/. !87 � ' � '�� lead to 3 4 +-, �/. !97�: � ' � '��;' � '=< 1 � .

For the evaluation functional >@?A, �/.B� ! ����� � we compute the derivative by using the repro-
ducing property of 	 and obtain 3 4 > ? , �/. !%3 4 � ��� � ����
 ��� ����� �)!C
 �#� ����� . Consequently for
a function D �E�F��G���GH�I�

which is differentiable in its third argument we obtain3 4 D �#� �KJL� ���#� � ��!MD�: �#� � JL� ����� � �K
 �#� ����� . Below D will be the loss function.

Regularized Risk Functionals and Learning In the standard learning setting we are
supplied with pairs of observations

�#�LN � J N � $O�P�QG
drawn according to some underlying

distribution R �#� � J�� . Our aim is to predict the likely outcome J at location
�

. Several
variants are possible: (i) R �#� � J�� may change over time, (ii) the training sample

�#� N �KJ N �
may be the next observation on which to predict which leads to a true online setting, or
(iii) we may want to find an algorithm which approximately minimizes a regularized risk
functional on a given training set.

We assume that we want to minimize a loss function D �����SG%�TGU���
which penalizes

the deviation between an observation J at location
�

and the prediction
����� � , based on

observations
���

1 �KJ 1 ����V;V�V��
�#�/W �KJ W � . Since R �#� � J�� is unknown, a standard approach is to

instead minimize the empirical risk

XZY\[^] , �/. !
_
`

Wa
N�b

1
D �#�cN �KJ N � ���#�cN �K� (1)

or, in order to avoid overly complex hypotheses, minimize the empirical risk plus an addi-
tional regularization term +-, �/. . This sum is known as the regularized risk

X"d#Y\e , �/.f� ! X"Y\[^] , �/.5gih +-, �/. !
_
`

Wa
Njb

1
D ���/N � J N � �����/N � � gkh +-, �/.

for
hQl9m V (2)

Common loss functions are the soft margin loss function [1] or the logistic loss for classifi-
cation and novelty detection [14], the quadratic loss, absolute loss, Huber’s robust loss [9],
or the � -insensitive loss [16] for regression. We discuss these in Section 3.

In some cases the loss function depends on an additional parameter such as the width of the
margin n or the size of the � -insensitive zone. One may make these variables themselves
parameters of the optimization problem [15] in order to make the loss function adaptive to
the amount or type of noise present in the data. This typically results in a term � � or o � n
added to D �#� �KJL� ���#� � � .
Stochastic Approximation In order to find a good estimator we would like to minimizeX d#Y\e , �/. . This can be costly if the number of observations is large. Recently several gradient
descent algorithms for minimizing such functionals efficiently have been proposed [13, 7].
Below we extend these methods to stochastic gradient descent by approximating

Xpd#Y\e , �/.

by X��������	� , � �
 .f� ! D �#��� �KJ � � ���#�
� � � gkh +-, �/.
(3)

and then performing gradient descent with respect to
X �������	� , � �
 . . Here

is either randomly

chosen from � _ �;V�V�V `�� or it is the new training instance observed at time

. Consequently

the gradient of
X��������	� , � �
 . with respect to

�
is

3 4 X ��������� , � �
 . ! D : �#� � � J � � ���#� � �K�
 ��� � �;� � gSh 3 4 +-, �/. ! D : ��� � � J � � ���#� � �K�
 ��� � �;� � gSh/� V (4)

The last equality holds if +-, �/. ! 1(' � ' (. Analogous results hold for general +-, �/. !7 � ' � '�� . The the update equations are hence straightforward:�S� � o�� 354 X��������	� , � �
 . V (5)

Here � $
���
is the learning rate controlling the size of updates undertaken at each itera-

tion. We will return to the issue of adjusting
� h ��� � at a later stage.

Descent Algorithm For simplicity, assume that +-, �/. !H1(' � '�(. In this case (5) becomes
� � � o�� � D : ����� �KJ � � ���#�
� � �K
 �#�
� ����� gihc� �E! � _ o h � � � o�� D : ����� � J � � ���#�
� �K�
 ����� �;� ��V (6)

While (6) is convenient to use for a theoretical analysis, it is not directly amenable to
computation. For this purpose we have to express

�
as a kernel expansion

����� �E! a
N�� N
 �#�cN � � � (7)

where the
� N

are (previously seen) training patterns. Then (6) becomes

� � � � _ o h � � � � o�� D : ����� � J � � ���#��� �K� (8)

! o�� D : �#� � �KJ � � ����� � � � for � � ! m
(9)

� N � � _ o h � � � N
for ���!
 V (10)

Eq. (8) means that at each iteration the kernel expansion may grow by one term. Further-
more, the cost for training at each step is not larger than the prediction cost: once we have
computed

���#�
� � , � � is obtained by the value of the derivative of D at
�#� � � J � � ���#��� �K� .

Instead of updating all coefficients � N
we may simply cache the power series

_ � � _ oh � ��� � _ o h � � (� � _ o h � �"!@��V;V�V and pick suitable terms as needed. This is particularly useful
if the derivatives of the loss function D will only assume discrete values, say ��o _ � m � _ � as
is the case when using the soft-margin type loss functions (see Section 3).

Truncation The problem with (8) and (10) is that without any further measures, the num-
ber of basis functions # will grow without bound. This is not desirable since # determines
the amount of computation needed for prediction. The regularization term helps us here. At
each iteration the coefficients � N

with ���!

are shrunk by

� _ o h � � . Thus after $ iterations
the coefficient � N

will be reduced to
� _ o h � �"% � N

. Hence:

Proposition 1 (Truncation Error) For a loss function D ��� � JL� ���#� �K� with its first deriva-
tive bounded by & and a kernel
 with bounded norm '�
 ��� �;� �;'('*) , the truncation error
in

�
incurred by dropping terms � N

from the kernel expansion of
�

after $ update steps is
bounded by � � _ o h � � % &�) . Furthermore, the total truncation error by dropping all terms
which are at least $ steps old is bounded by

' � o � � d�+-, � '�'
�
<.%a
N�b

1
� � _ o h � �

�
<
N
&�)0/ h < 1 � _ o h � � % &�) (11)

Here
� � d�+ , � ! � � N�b �

<.% � 1 �
N
 ���/N ����� . Obviously the approximation quality increases expo-

nentially with the number of terms retained.

The regularization parameter
h

can thus be used to control the storage requirements for the
expansion. In addition, it naturally allows for distributions R ��� �KJ5� that change over time in
which cases it is desirable to forget instances

�#� N � J N � that are much older than the average
time scale of the distribution change [11].

3 Applications

We now proceed to applications of (8) and (10) to specific learning situations. We utilize
the standard addition of the constant offset � to the function expansion, i.e. � �#� ��! ����� � g �
where

�O$ 	 and � $ �
. Hence we also update � into � o � 3�� X��������	� , � . .

Classification A typical loss function in SVMs is the soft margin, given byD ��� � JL��� ��� � � !��
	�� ��m � _ o�J
� ��� � � . In this situation the update equations become

� � N � � � ����� ��� �K� _ o�� h � � N � J N �Z��� g ��J N � if J�� �#�
� � / _�K� _ o�� h � � N � m ����� otherwise. (12)

In classification with the � -trick we avoid having to fix the margin n by treating it as a
variable [15]. The value of n is found automatically by using the loss function

D �#� � JL��� �#� � ��!��
	�� ��m � n o�J
� ��� �K��o � n (13)

where
m ' � ' _

is another parameter. Since � has a much clearer intuitive meaning thann , it is easier to tune. On the other hand, one can show [15] that the specific choice of
h

has no influence on the estimate in � -SV classification. Therefore we may set
h ! _

and
obtain

� � N � � � ���=� n5� � � � � _ o � � � N �KJ N �"��� g ��J N � n g � � _ o � � � if J
� ��� � � /kn� � _ o � � � N � m ���=� npo�� � � otherwise. (14)

Finally, if we choose the hinge-loss, D �#� � JL��� �#� � ��!��
	�� ��m �;o J
� ��� � ���
� � N � � � ����� � � �K� _ o�� h � � N � J N �Z��� g ��J N � if J�� �#� � � / m�K� _ o�� h � � N � m ����� otherwise. (15)

Setting
h ! m

recovers the kernel-perceptron algorithm. For nonzero
h

we obtain the
kernel-perceptron with regularization.

Novelty Detection The results for novelty detection [14] are similar in spirit. The � -
setting is most useful here particularly where the estimator acts as a warning device (e.g.
network intrusion detection) and we would like to specify an upper limit on the frequency
of alerts

���#� �(/Un . The relevant loss function is D ��� �KJc� ���#� � �Z!��
	�� ��m � n o ���#� �K��o � n
and usually [14] one uses

�8$ 	 rather than
�Tg � where � $i�

in order to avoid trivial
solutions. The update equations are

� � N � � � � n5� � � � � _ o � � � N � �Z�Kn g � � _ o � �K� if
����� � � /8n� � _ o � � � N � m �Kn o � � � otherwise. (16)

Considering the update of n we can see that on average only a fraction of � observations
will be considered for updates. Thus we only have to store a small fraction of the

�fN
.

Regression We consider the following four settings: squared loss, the � -insensitive loss
using the � -trick, Huber’s robust loss function, and trimmed mean estimators. For con-
venience we will only use estimates

�*$ 	 rather than �8! � g � where � $%�
. The

extension to the latter case is straightforward. We begin with squared loss where D is given
by D �#� � JL� ����� � � !P1(

� J o ����� �K��(�V Consequently the update equation is� � N � � � � � � � _ o h � � � N � � � J � o ���#� � � �K� V (17)

This means that we have to store every observation we make, or more precisely, the
prediction error we made on the observation. The � -insensitive loss D ��� �KJc� ���#� � � !�
	�� ��m ��� JQo ���#� ���/o �@� avoids this problem but introduces a new parameter in turn —
the width of the insensitivity zone � . By making � a variable of the optimization problem
we have D ��� � JL� ���#� �K��!�� 	 � � m ��� J o ���#� ���\o � � g � �5V The update equations now have to be
stated in terms of � N � � � , and � which is allowed to change during the optimization process.
This leads to
� � N � � � � � � ��� � � _ o h � � � N �������	� � J � o ������� � ��� �

g � _ o � � � � if � J � o ������� �
� l �� � _ o h � � � N � m � �"o�� � � otherwise.
(18)

This means that every time the prediction error exceeds � , we increase the insensitivity
zone by � � . Likewise, if it is smaller than � , the insensitive zone is decreased by � � _ o � � .
Next let us analyze the case of regression with Huber’s robust loss. The loss is given by

D ��� � JL� ���#� �K��! � � J o ���#� �
�@o 1(�� if � J o ���#� ����
 �1(��
� J o ���#� �K� (otherwise.

(19)

As before we obtain update equations by computing the derivative of D with respect to
���#� � .

� � N � � � � � � � � _ o�� � � N � ������� � J � o ���#��� �K� � if � J � o ���#��� ��� l �� � _ o�� � � N � � < 1 � J � o ������� � �K� otherwise. (20)

Comparing (20) with (18) leads to the question whether � might not also be adjusted
adaptively. This is a desirable goal since we may not know the amount of noise present in
the data. While the � -setting allowed us to form such adaptive estimators for batch learning
with the � -insensitive loss, this goal has proven elusive for other estimators in the standard
batch setting. In the online situation, however, such an extension is quite natural (see also
[4]). All we need to do is make � a variable of the optimization problem and set

� � N � � � � � �
� � �K� _ o�� � � N �������	� � J � o ����� � � ��� �

g � � _ o � � � if � J � o ����� � ��� l ��K� _ o�� � � N � � < 1 � J � o ���#� � � � � � o � � � otherwise.
(21)

4 Theoretical Analysis

Consider now the classification problem with the soft margin loss D ��� �KJc� ���#� � � !�
	�� ��m � n o8J ���#� �K� ; here n is a fixed margin parameter. Let
� �

denote the hypothesis of
the online algorithm after seeing the first

 o _
observations. Thus, at time

, the algorithm

receives an input
�.�

, makes its prediction
� � ����� � , receives the correct outcome J � , and up-

dates its hypothesis into
� � � 1 according to (5). We now wish to bound the cumulative risk� W� b

1
X �������	� , � � �
 . . The motivation for such bounds is roughly as follows. Assume there is

some fixed distribution R from which the examples
�#� � � J � � are drawn, and defineX�� , �/.f� !���� ?�� �
���! , D �#� � JL� ����� �K� .5gkh +-, �/. V

Then it would be desirable for the online hypothesis
� �

to converge towards
�	" !

arg min 4 X , �/. . If we can show that the cumulative risk is asymptotically ` X ��������� , � " �
 .Kg# � ` � , we see that at least in some sense
� �

does converge to
� "

.

Hence, as a first step in our convergence analysis, we obtain an upper bound for the cumu-
lative risk. In all the bounds of this section we assume + � � �E! 1(' � '�(.

Theorem 1 Let
�K�#� � �KJ � � �

W� b
1 be an example sequence such that
 �#� � � � � � ') (for all

. Fix � lCm
, and choose the learning rate �*!���� �) ` 1�� (;� . Then for any � such that'�� '�'�� we haveWa
� b

1
X �������	� , � � �
 . '

Wa
� b

1
X ��������� , �L�
 . g �) ` 1�� (g�� � _ � V (22)

Notice that the bound does not depend on any probabilistic assumptions. If the example
sequence is such that some fixed predictor � has a small cumulative risk, then the cumula-
tive risk of the online algorithm will also be small. There is a slight catch here in that the
learning rate � must be chosen a priori, and the optimal setting depends on ` . The longer
the sequence of examples, the smaller learning rate we want. We can avoid this by using a
learning rate that starts from a fairly large value and decreases as learning progresses. This
leads to a bound similar to Theorem 1 but with somewhat worse constant coefficients.

Theorem 2 Let
�K�#� � �KJ � �K�

W� b
1 be an example sequence such that
 �#� � � � � ��') (for all

.

Fix � l*m
, and use at update

the learning rate � � ! _ � �
	�h
 1�� (� . Then for any � such

that '�� '�'�� we haveWa
� b

1
X ��������� , � � �
 . '

Wa
� b

1
X �������	� , �L�
 .5g���hf� � g)
� h � (` 1�� (g�� � _ ��V (23)

Let us now consider the implications of Theorem 2 to a situation in which we assume that
the examples

��� � � J � � are i.i.d. according to some fixed distribution R .

Theorem 3 Let R be a distribution over
� �kG

, such that
 ��� � � � ') (holds with
probability

_
for

�#� �KJ���� R . Let �� W ! � _ � ` � � W
< 1� b
1

� �
where

� �
is the

-th online

hypothesis based on an example sequence
� ��� � � J � � �

W� b
1 that is drawn i.i.d. according to R .

Fix � l*m
, and use at update

the learning rate � � ! _ � �
	�h
 1�� (� . Then for any � such

that '�� '�'�� we have

�0, X � , �� W .�. ' X � , � . g�� hB� � g)
� h � (` < 1�� (g�� � ` < 1 � V (24)

If we know in advance how many examples we are going to draw, we can use a fixed
learning rate as in Theorem 1 and obtain somewhat better constants.

5 Experiments and Discussion

In our experiments we studied the performance of online � -SVM algorithms in various
settings. They always yielded competitive performance. Due to space constraints we only
report the findings in novelty detection as given in Figure 1 (where the training algorithm
was fed the patterns sans class labels).

Already after one pass through the USPS database (5000 training patterns, 2000 test pat-
terns, each of them of size

_�� � _��
pixels), which took in MATLAB less than 15s on a

433MHz Celeron, the results can be used for weeding out badly written digits. The � -
setting was used (with � ! m V m _) to allow for a fixed fraction of detected “outliers.” Based
on the theoretical analysis of Section 4 we used a decreasing learning rate with

h
�
 <��� .
Conclusion We have presented a range of simple online kernel-based algorithms for a
variety of standard machine learning tasks. The algorithms have constant memory require-
ments and are computationally cheap at each update step. They allow the ready application
of powerful kernel based methods such as novelty detection to online and time-varying
problems.

Results after one pass through the USPS
database. We used Gaussian RBF kernels
with width

�
� (0! m V ��� ! _ ���

. The learn-
ing rate was adjusted to 1� W where ` is
the number of iterations. Top: the first 50
patterns which incurred a margin error; bot-
tom left: the 50 worst patterns according to����� � o8n on the training set, bottom right:
the 50 worst patterns on an unseen test set.

Figure 1: Online novelty detection on the USPS dataset with � ! m V m _ .

Acknowledgments A.S. was supported by the DFG under grant Sm 62/1-1, J.K. &
R.C.W. were supported by the ARC. The authors thank Paul Wankadia for help with the
implementation.

References

[1] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of
two linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

[2] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector ma-
chine learning. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems 13, pages 409–415. MIT Press, 2001.

[3] L. Csató and M. Opper. Sparse representation for gaussian process models. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13, pages 444–450. MIT Press, 2001.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Technical report, Stanford University, Dept. of Statistics, 1998.

[5] C. Gentile. A new approximate maximal margin classification algorithm. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13, pages 500–506. MIT Press, 2001.

[6] T. Graepel, R. Herbrich, and R. C. Williamson. From margin to sparsity. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 210–216. MIT Press, 2001.

[7] Y. Guo, P. Bartlett, A. Smola, and R. C. Williamson. Norm-based regularization of
boosting. Submitted to Journal of Machine Learning Research, 2001.

[8] M. Herbster. Learning additive models online with fast evaluating kernels. In Proc.
14th Annual Conference on Computational Learning Theory (COLT), pages 444–460.
Springer, 2001.

[9] P. J. Huber. Robust statistics: a review. Annals of Statistics, 43:1041, 1972.

[10] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

[11] J. Kivinen, A.J. Smola, and R.C. Williamson. Large margin classification for moving
targets. Unpublished manuscript, 2001.

[12] Y. Li and P.M. Long. The relaxed online maximum margin algorithm. In S. A. Solla,
T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing
Systems 12, pages 498–504. MIT Press, 1999.

[13] L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for
combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schu-
urmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, 2000. MIT
Press. 221–246.

[14] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating
the support of a high-dimensional distribution. Neural Computation, 13(7), 2001.

[15] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, 2000.

[16] V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approx-
imation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281–
287, Cambridge, MA, 1997. MIT Press.

